Xiaoqing Chen#, Huijuan Zhao#, Ruixiang Fei, Chun Huang, Jingsi Qiao, Cheng Sun, Haiming Zhu, Li Zhan, Zehua Hu, Songlin Li, Li Yang, Zemin Tang, Lianhui Wang, Yi Shi, Wei Ji, Jian-Bin Xu, Li Gao*, Xuetao Gan* & Xinran Wang*
Abstract:
Two-dimensional (2D) materials offer strong light-matter interaction and design flexibility beyond bulk semiconductors, but an intrinsic limit is the low absorption imposed by the atomic thickness. A long-sought-after goal is to achieve complementary absorption enhancement through energy transfer (ET) to break this limit. However, it is found challenging due to the competing charge transfer (CT) process and lack of resonance in exciton states. Here, we report highly efficient ET in a 2D hybrid organic-inorganic heterostructure (HOIST) of Me-PTCDI/WS2. Resonant ET is observed leading to enhanced WS2 photoluminescence (PL) by 124 times. We identify Dexter exchange between the Frenkel state in donor and an excited 2s state in acceptor as the main ET mechanism, as supported by density functional theory calculations. We further demonstrate ET-enhanced phototransistor devices with enhanced responsivity by nearly 1000 times without sacrificing the response time. Our results expand the understanding of interlayer relaxation processes in 2D materials and open opportunities in optoelectronic devices.
Kagome materials have attracted extensive attention due to their correlated properties. The breathing kagome material system Nb3F8, Nb3Cl8, Nb3Br8, Nb3I8 is regarded as a Mott insulator. However, studies on the influence of interlayer coupling on its magnetic and Mott properties are lacking. In this work, we investigated the effect of interlayer coupling on bilayer properties of each Nb3X8 (X = F, Cl, Br, I) compound via density functional theory (DFT) calculations, considering 24 stacking configurations per material. We found that each bilayer material is a Mott insulator. Due to the competition between interlayer Pauli repulsion and hopping, most interlayer magnetism is AFM, a small number of cases show AFM-FM degeneracy, and the magnetic ground state of 3 configurations is interlayer FM, i.e., tunable interlayer magnetism occurs. This robustness of Mott states coexisting with tunable interlayer magnetism provide novel and comprehensive analysis and insights for the research of breathing kagome Mott insulators.
Low-dimensional magnetic materials have garnered significant interest due to their unique physical properties and potential applications. Nevertheless, the synthesis of one-dimensional (1D) magnetic materials presents challenges, and the properties of these 1D materials at the single-chain limit have not been well investigated. We here explore experimentally and theoretically 1D CrX2 (X= Cl, Br, I) magnetic single-chains residing within carbon nanotubes. Single chains of CrX2 are confirmed by atomic-resolution scanning transmission electron microscopy imaging and spectroscopy analysis. Electron energy loss spectroscopy clearly reveals the high-spin state of Cr atoms within the chain. Notably, we present the first precise measurement and analysis of Cr spin state at the single-chain level, revealing that these spin states can be controlled by the local atomic bonding configuration (CrX2 versus CrX3 phases). Density functional theory calculations support the structural stability and provide the magnetic and electronic properties of the 1D CrX2 chains.
Hanxiang Wu, Zuoquan Tan, Zhaxi Suonan, Shanshan Chen, Rui Xu, Wei Ji, Zhihai Cheng, and Fei Pang*
Abstract:
Although 2D self-intercalated Cr5Te8 has been successfully synthesized via chemical vapor deposition (CVD), its etching behavior remains largely unexplored. Etching, as the inverse process of material growth, is essential for understanding growth mechanisms and fabricating nanosheet patterns. Herein, we explore the anisotropic etching of 2D Cr5Te8 assisted by an excess Te supply. The etching process initiates from both the surface and the edge, creating distinct holes and nanoribbons with triangular or hexagonal shapes. To the best of our knowledge, this is the first report on controllable anisotropic etching patterns in 2D Cr5Te8. Furthermore, magnetic measurements reveal ferromagnetism in the etched nanosheets with a Curie temperature (TC) of 164 K, slightly lower than that of the unetched nanosheets. The etched nanosheets exhibit an enhanced saturated magnetic field of 38.5 kOe, approximately 3.2 times that of the unetched nanosheets. This enhancement in the saturated magnetic field is attributed to the pattern-induced strengthening of the reentrant stray field. This study offers a new direction for preparing patterned 2D materials and opens a novel avenue for modulating 2D magnetism.
Two‑dimensional multiferroics promise low‑power, multifunctional devices, yet the intrinsic coexistence and mutual control of three coupled ferroic orders in a single layer remains elusive. Here, we identify pentagonal monolayer FeO2 as an intrinsic triferroic altermagnet where ferroelectric (FE), ferroelastic (FA), and altermagnetic (AM) orders coexist and tightly coupled, accompanied by a competing antiferroelectric (AFE) phase using first‑principles calculations. The solely presence of glide mirror Mx symmetry in a FeO2 sublayer, with the breaking of four‑fold rotation C4z symmetry, induces in‑plane vector ferroelectricity and twin‑related ferroelastic strains. Both FE and AFE phases break combined parity–time symmetry and display sizable altermagnetic spin splitting with Néel temperatures over 200 K. Electric‑field induced rotation of the FE polarization reverses the sign of the spin splitting, while in‑plane uniaxial strain triggers ferroelastic switching that simultaneously rotates the FE polarization vector by 90° and reverses the AM state. These electric‑field‑ and strain‑mediated pathways interlink six distinct polarization states that can be selected purely by electric fields and/or mechanical strain. This work extends intrinsic triferroicity to pentagonal monolayers and outlines a symmetry‑based route toward mechanically and electrically configurable altermagnetic spintronics.