Deping Guo (郭的坪)#, Cong Wang (王聪)#, Lvjin Wang (王侣锦), Yunhao Lu (陆赟豪), Hua Wu (吴骅), Yanning Zhang (张妍宁), and Wei Ji (季威)*
Abstract:
Two-dimensional (2D) van der Waals magnetic materials have promising and versatile electronic and magnetic properties in the 2D limit, indicating a considerable potential to advance spintronic applications. Theoretical predictions thus far have not ascertained whether monolayer VCl3 is a ferromagnetic (FM) or anti-FM monolayer; this also remains to be experimentally verified. We theoretically investigate the influence of potential factors, including 𝐶3 symmetry breaking, orbital ordering, epitaxial strain, and charge doping, on the magnetic ground state. Utilizing first-principles calculations, we predict a collinear type-III FM ground state in monolayer VCl3 with a broken 𝐶3 symmetry, wherein only the former two of three 𝑡2g orbitals (𝑎1g, 𝑒 𝜋 g2 and 𝑒 𝜋 g1) are occupied. The atomic layer thickness and bond angles of monolayer VCl3 undergo abrupt changes driven by an orbital ordering switch, resulting in concomitant structural and magnetic phase transitions. Introducing doping to the underlying Cl atoms of monolayer VCl3 without 𝐶3 symmetry simultaneously induces in- and out-of-plane polarizations. This can achieve a multiferroic phase transition if combined with the discovered adjustments of magnetic ground state and polarization magnitude under strain. The establishment of an orbital-ordering driven regulatory mechanism can facilitate deeper exploration and comprehension of magnetic properties of strongly correlated systems in monolayer VCl3.
Boyu Fu#; Yurou Guan#; Wei Yuan#; Jianqun Geng#; Zhenliang Hao#; Zilin Ruan; Shijie Sun ; Yong Zhang; Wei Xiong; Lei Gao*; Yulan Chen*; Wei Ji*; Jianchen Lu*; Jinming Cai*
Abstract:
Tert-butyl functional groups can modulate the self-assembly behavior of organic molecules on surfaces. However, the precise construction of supramolecular architectures through their controlled thermal removal remains a challenge. Herein, we precisely controlled the removal amount of tert-butyl groups in tetraazaperopyrene derivatives by stepwise annealing on Ag(111). The evolution of 4tBu-TAPP supramolecular self-assembly from the grid-like structure composed of 3tBu-TAPP through the honeycomb network formed by 2tBu-TAPP to the one-dimensional chain co-assembled by tBu-TAPP and TAPP was successfully realized. This series of supramolecular nanostructures were directly visualized by high resolution scanning tunneling microscopy. Tip manipulation and density functional theory calculations show that the formation of honeycomb network structure can be attributed to the van der Waals interactions, N–Ag–N coordination bonds, and weak C–H⋯N hydrogen bonds. Further addition of two tert-butyl groups (6tBu-TAPP) leads to a completely different assembly evolution, due to the fact that the additional tert-butyl groups affect the molecular adsorption behavior and ultimately induce desorption. This work can possibly be exploited in constructing stable and long-range ordered nanostructures in surface-assisted systems, which can also promote the development of nanostructures in functional molecular devices.
Mao-Peng Miao, Nanshu Liu, Wen-Hao Zhang, Jian-Wang Zhou, Dao-Bo Wang, Cong Wang, Wei Ji, and Ying-Shuang Fu
Abstract:
Noncollinear magnetic orders in monolayer van der Waals magnets are crucial for probing delicate magnetic interactions under minimal spatial constraints and advancing miniaturized spintronic devices. Despite their significance, achieving atomic-scale identification remains challenging. In this study, we utilized spin-polarized scanning tunneling microscopy and density functional theory calculations to identify spin-spiral orders in mono- and bi-layer NiI2, grown on graphene-covered SiC(0001) substrates. We discovered two distinct spin-spiral states with Q vectors aligning and deviating by 7° from the lattice direction, exhibiting periodicities of 4.54 and 5.01 times the lattice constant, respectively. These findings contrast with bulk properties and align closely with our theoretical predictions. Surprisingly, the finite sizes of monolayers induce incommensurability with the spin-spiral period, facilitating collective spin switching behavior under magnetic fields. Our research reveals intrinsic noncollinear magnetism at the monolayer limit with unprecedented resolution, paving the way for exploring novel spin phenomena.
Zeyu Liu, Xianghua Kong, Zewen Wu, Linwei Zhou, Jingsi Qiao and Wei Ji
Abstract:
Many exotic electronic states were discovered in moiré superlattices hosted in twisted homo-bilayers in the past decade, including unconventional superconductivity and correlated insulating states. However, it is technically challenging to precisely and orderly stack two or more layers into certain twisting angles. Here, we presented a theoretical strategy that introduces moiré superlattices in untwisted homo-bilayers by applying different in-plane strains on the two layers of a graphene homo-bilayer, respectively. Our density functional theory calculations indicate that the graphene bilayer exhibits substantial out-of-plane corrugations that form a coloring-triangular structure in each moiré supercell under gradient in-plane strains. Such structure leads to a set of kagome bands, namely one flat-band and, at least, one Dirac band, developing along the M-K path after band-folding. For comparison, uniformly applied in-plane strain only yields a nearly flat band within path K-G, which is originated from local quantum confinement. These findings highlight the gradient strain as a route to feasibly fabricate exotic electronic states in untwisted flexible homo-bilayers.
Zemin Pan, Wenqi Xiong, Jiaqi Dai, Yunhua Wang, Tao Jian, Xingxia Cui, Jinghao Deng, Xiaoyu Lin, Zhengbo Cheng, Yusong Bai, Chao Zhu, Da Huo, Geng Li, Min Feng, Jun He, Wei Ji, Shengjun Yuan, Fengcheng Wu, Chendong Zhang, and Hong-Jun Gao
Abstract:
Flat electronic bands near the Fermi level provide a fertile playground for realizing interaction-driven correlated physics. To date, related experiments have mostly been limited to engineered multilayer systems (e.g., moiré systems). Herein, we report an experimental realization of nearly flat bands across the Fermi level in monolayer MoTe2-x by fabricating a uniformly ordered mirror twin boundary superlattice (corresponding to a stoichiometry of MoTe56/33). The kagome flat bands are discovered by combining scanning tunnelling microscopy and theoretical calculations. The partial filling nature of flat bands yields a correlated insulating state exhibiting a hard gap as large as 15 meV. Moreover, we observe pronounced responses of the correlated states to magnetic fields, providing evidence for a spin-polarized ground state. Our work introduces a monolayer platform that manifests strong correlation effects arising from flattened electronic bands.
Jinghao Deng, Deping Guo, Yao Wen, Shuangzan Lu, Zhengbo Cheng, Zemin Pan, Tao Jian, Yusong Bai, Hui Zhang, Wei Ji, Jun He, Chendong Zhang
Abstract:
Multiferroicity allows magnetism to be controlled using electric fields or vice versa, which has gained tremendous interest in both fundamental research and device applications. A reduced dimensionality of multiferroic materials is highly desired for device miniaturization, but the coexistence of ferroelectricity and magnetism at the two-dimensional limit is still debated. Here, we used a NbSe2 substrate to break both the C3 rotational and inversion symmetries in monolayer VCl3 and thus introduced exceptional in-plane ferroelectricity into a two dimensional magnet. Scanning tunnelling spectroscopy directly visualized ferroelectric domains and manipulated their domain boundaries in monolayer VCl3, where coexisting antiferromagnetic order with canted magnetic moments was verified by vibrating sample magnetometer measurements. Our density functional theory calculations highlight the crucial role that highly directional interfacial Cl–Se interactions play in breaking the symmetries and thus in introducing in-plane ferroelectricity, which was further verified by examining an ML-VCl3/graphene sample. Our work demonstrates an approach to manipulate the ferroelectric states in monolayered magnets through van der Waals interfacial interactions.