Kagome bands and magnetism in MoTe2-x kagome monolayers

Kagome bands and magnetism in MoTe2-x kagome monolayers

Jiaqi Dai, Zhongqin Zhang, Zemin Pan, Cong Wang, Chendong Zhang*, Zhihai Cheng,  and Wei Ji*

Kagome lattices facilitate various quantum phases, yet in bulk materials, their kagome flat-bands often interact with bulk bands, suppressing kagome electronic characteristics for hosting these phases. Here, we use density-functional-theory calculations to predict the geometric and electronic structures, as well as the topological and magnetic properties, of a series of MoTe2-x kagome monolayers formed by mirror-twin-boundary (MTB) loops. We analyze nine MTB-loop configurations of varying sizes and arrangements to assess their impact on various properties. Within the intrinsic bandgap of MoTe2, we identify two sets of kagome bands, originating from in-plane and out-of-plane Te p-orbitals at MTB-loop edges and -vertices, respectively. Three configurations exhibit superior stability, while three others show comparable stability. Among these, four display bandgaps and potentially non-zero Z2 topological invariants, suggesting possible topological phases, while the remaining two are metallic and feature Stoner magnetization. These findings guide the design of kagome-based two-dimensional materials with tunable electronic, topological, and magnetic properties.

Nonvolatile Electric Control of Rashba Spin Splitting in Sb/In2Se3 Heterostructure

Nonvolatile Electric Control of Rashba Spin Splitting in Sb/In2Se3 Heterostructure

Haixia Cheng, Xu Sun, Jun Zhou*, Shijie Wang, Hang Su*, and Wei Ji*

Ferroelectric Rashba semiconductors (FRS) are highly demanded for their potential capability for nonvolatile electric control of electron spins. An ideal FRS is characterized by a combination of room temperature ferroelectricity and a strong Rashba effect, which has, however, been rarely reported. Herein, we designed a room-temperature FRS by vertically stacking a Sb monolayer on a room-temperature ferroelectric In2Se3 monolayer. Our first-principles calculations reveal that the Sb/In2Se3 heterostructure exhibits a clean Rashba splitting band near the Fermi level and a strong Rashba effect coupled to the ferroelectric order. Switching the electric polarization direction enhances the Rashba effect, and the flipping is feasible with a low energy barrier of 22 meV. This Rashba–ferroelectricity coupling effect is robust against changes of the heterostructure interfacial distance and external electric fields. Such a nonvolatile electrically tunable Rashba effect at room temperature enables potential applications in next-generation data storage and logic devices operated under small electrical currents.

杨紫尧 硕士生 Yang, Ziyao (M1 Student)

杨紫尧 硕士生 Yang, Ziyao (M1 Student)

基本信息
杨紫尧:2024级 硕士生
办公地点:北园物理楼206
电子邮箱:yangziyao@ruc.edu.cn
电  话:+86-10-62517997
传  真:+86-10-62517887
邮  编:100872

教育经历

(1) 2024-09 至今,中国人民大学,物理学系,硕士研究生,在读
(2) 2020-09至2024-06,东北师范大学,物理系,本科,理学学士

研究方向



代表性论文

冯佳佳 博士生 Feng, Jiajia (P2 Student)

冯佳佳 博士生 Feng, Jiajia (P2 Student)

基本信息
冯佳佳:2024级 直博生
办公地点:北园物理楼206
电子邮箱:fengjiajia355@ruc.edu.cn
电  话:+86-10-62517997
传  真:+86-10-62517887
邮  编:100872

教育经历

(1) 2024-09 至今,中国人民大学,物理学系,直博,在读
(2) 2020-09 至 2024-06,山东师范大学,物理系,本科,理学学士

研究方向

层间耦合材料的第一性原理计算,氧化物材料的第一性原理计算。

代表性论文

Controlled fabrication of freestanding monolayer SiC by electron irradiation

Controlled fabrication of freestanding monolayer SiC by electron irradiation

Yunli Da (笪蕴力), Ruichun Luo (罗瑞春), Bao Lei (雷宝), Wei Ji (季威) and Wu Zhou (周武)*

The design and preparation of novel quantum materials with atomic precision are crucial for exploring new physics and for device applications. Electron irradiation has been demonstrated as an effective method for preparing novel quantum materials and quantum structures that could be challenging to obtain otherwise. It features the advantages of precise control over the patterning of such new materials and their integration with other materials with different functionalities. Here, we present a new strategy for fabricating freestanding monolayer SiC within nanopores of a graphene membrane. By regulating the energy of the incident electron beam and the in-situ heating temperature in a scanning transmission electron microscope (STEM), we can effectively control the patterning of nanopores and subsequent growth of monolayer SiC within the graphene lattice. The resultant SiC monolayers seamlessly connect with the graphene lattice, forming a planar structure distinct by a wide direct bandgap. Our in-situ STEM observations further uncover that the growth of monolayer SiC within the graphene nanopore is driven by a combination of bond rotation and atom extrusion, providing new insights into the atom-by-atom self-assembly of freestanding two-dimensional (2D) monolayers.