Zeyu Liu, Xianghua Kong, Zewen Wu, Linwei Zhou, Jingsi Qiao and Wei Ji
Abstract:
Moire superlattices in twisted homo-bilayers have revealed exotic electronic states, including unconventional superconductivity and correlated insulating phases. However, their fabrication process often introduces moire disorders, hindering reproducibility and experimental control. Here, we propose an alternative approach using gradient strain to construct moire superlattices in untwisted bilayer graphene (gs-BLG). Through force-field and first-principles calculations, we show that gs-BLG exhibits kagome-like interlayer spacing distributions and strain-tunable kagome electronic bands. The competition between interlayer coupling and in-plane strain relaxation leads to distinct structural deformations, giving rise to three forms of diatomic kagome lattices: subtle, pronounced, and distorted. kagome electronic bands are identified near the Fermi level in their band structures. Modulating strain gradients enables tailoring bandwidths and signs of hopping parameters of these kagome bands, providing a versatile platform for studying exotic electronic phases. Our findings establish gradient strain as an alternative to twist engineering, opening an avenue for exploring emergent electronic phases in graphene-based systems.
Quantum interference has been intensively pursued in molecular electronics to investigate and utilize coherent electron transport at the ultra-small level. An essential type of quantum interference with drastic destructive-constructive switching, known as Fano interference, has been widely reported in various kinds of nanoelectronics electronic systems, but not yet been electrostatically gating in a single-molecule device. Here, we fabricate the three-terminal single-molecule transistors based on the molecule with a long backbone and a side group to demonstrate the gate-controllable Fano interference. By applying bias and gate voltages, the two-dimensional differential conductance map shows the noncentrosymmetrical Fano patterns. Combined with the electron transport model and the first principles calculations, the resonant parameters of the Fano interference can unveil the coupling geometry of the junction and the spatial distribution of the resonant states. Our findings provide an instrumental method to induce and utilize the quantum interference behaviours at the molecular level.
Kagome-lattice materials possess attractive properties for quantum computing applications, but their synthesis remains challenging. Herein, based on the compelling identification of the two cleavable surfaces of Co3Sn2S2, we show surface kagome electronic states (SKESs) on a Sn-terminated triangular Co3Sn2S2 surface. Such SKESs are imprinted by vertical p-d electronic hybridization between the surface Sn (subsurface S) atoms and the buried Co kagome-lattice network in the Co3Sn layer under the surface. Owing to the subsequent lateral hybridization of the Sn and S atoms in a corner-sharing manner, the kagome symmetry and topological electronic properties of the Co3Sn layer is proximate to the Sn surface. The SKESs and both hybridizations were verified via qPlus non-contact atomic force microscopy (nc-AFM) and density functional theory calculations. The construction of SKESs with tunable properties can be achieved by the atomic substitution of surface Sn (subsurface S) with other group III-V elements (Se or Te), which was demonstrated theoretically. This work exhibits the powerful capacity of nc-AFM in characterizing localized topological states and reveals the strategy for synthesis of large-area transition-metal-based kagome-lattice materials using conventional surface deposition techniques.
Ping Chen, Jinbo Pan, Wenchao Gao, Bensong Wan, Xianghua Kong, Yang Cheng, Kaihui Liu, Shixuan Du, Wei Ji, Caofeng Pan & Zhong Lin Wang
Abstract
Transition metal dichalcogenides (TMDCs) with 2H phase are expected to be building blocks in next-generation electronics; however, they suffer from electrical anisotropy, which is the basics for multi-terminal artificial synaptic devices, digital inverters, and anisotropic memtransistors, which are highly desired in neuromorphic computing. Herein, the anisotropic carrier mobility from 2H WSe2 is reported, where the anisotropic degree of carrier mobility spans from 0.16 to 0.95 for various WSe2 field-effect transistors under a gate voltage of −60 V. Phonon scattering, impurity ions scattering, and defect scattering are excluded for anisotropic mobility. An intrinsic screening layer is proposed and confirmed by Z-contrast scanning transmission electron microscopy (STEM) imaging to respond to the electrical anisotropy. Seven types of intrinsic screening layers are created and calculated by density functional theory to evaluate the modulated electronic structures, effective masses, and scattering intensities, resulting in anisotropic mobility. The discovery of anisotropic carrier mobility from 2H WSe2 provides a degree of freedom for adjusting the physical properties of 2H TMDCs and fertile ground for exploring and integrating TMDC electronic transistors with better performance along the direction of high mobility.