Ferroelectricity in untwisted heterobilayers of transition metal dichalcogenides

Ferroelectricity in untwisted heterobilayers of transition metal dichalcogenides

Science 376, 973-978 (2022)

Lukas Rogée, Lvjin Wang, Yi Zhang, Songhua Cai, Peng Wang, Manish Chhowalla, Wei Ji & Shu Ping Lau

Two-dimensional materials with out-of-plane (OOP) ferroelectric and piezoelectric properties are highly desirable for the realization of ultrathin ferro- and piezoelectronic devices. We demonstrate unexpected OOP ferroelectricity and piezoelectricity in untwisted, commensurate, and epitaxial MoS2/WS2 heterobilayers synthesized by scalable one-step chemical vapor deposition. We show d33 piezoelectric constants of 1.95 to 2.09 picometers per volt that are larger than the natural OOP piezoelectric constant of monolayer In2Se3 by a factor of ~6. We demonstrate the modulation of tunneling current by about three orders of magnitude in ferroelectric tunnel junction devices by changing the polarization state of MoS2/WS2 heterobilayers. Our results are consistent with density functional theory, which shows that both symmetry breaking and interlayer sliding give rise to the unexpected properties without the need for invoking twist angles or moiré domains.

Visualization of Strain-Engineered Nanopattern in Center-Confined Mesoscopic WS2 Monolayer Flakes

Visualization of Strain-Engineered Nanopattern in Center-Confined Mesoscopic WS2 Monolayer Flakes

J. Phys. Chem. C 126, 7184–7192 (2022)

Rui Xu, Yingzhuo Lun, Lan Meng, Fei Pang, Yuhao Pan, Zhiyue Zheng, Le Lei, Sabir Hussain, Yanjun Li, Yasuhiro Sugawara, Jiawang Hong, Wei Ji & Zhihai Cheng*

Abstract

Strain engineering plays a crucial role in controlling the physical properties of two-dimensional (2D) materials. However, the mechanical behavior of stressed 2D crystals has not been fully understood. In this study, the fracture behavior and accompanying properties of a strained single-crystal monolayer WS2 of submicron scale were investigated using a theoretical–experimental joint study. After thermal strain, the WS2 monolayer was split into different forms by several cracks, with the cause of the crack formation being studied using finite element analysis (FEA). The cracks were initiated from the vertex of the nucleation center, extending along the stronger von Mises stress isolines and terminating at the edges of the monolayers. Within the separate sections, ripple regions were observed, forming several typical nanopatterns. The band gap, frictional, viscosity, and elasticity characteristics of the different strain regions were also investigated. The nanopattern should enable flexibility in the design of more sophisticated devices based on 2D materials.