Scanning tunneling microscopy (STM) vibronic spectroscopy, which has provided submolecular insights into electron-vibration (vibronic) coupling, faces challenges when probing the pivotal low-frequency vibronic excitations. Because of eigenstate broadening on solid substrates, resolving low-frequency vibronic states demands strong decoupling. This work designs a type II band alignment in STM junction to achieve effective charge-transfer state decoupling. This strategy enables the successful identification of the lowest-frequency Hg(ω1) (Raman-active Hg mode) vibronic excitation within single C60 molecules, which, despite being notably pronounced in electron transport of C60 single-molecule transistors, has remained hidden at submolecular level. Our results show that the observed Hg(ω1) excitation is “anchored” to all molecules, irrespective of local geometry, challenging common understanding of structural definition of vibronic excitation governed by Franck-Condon principle. Density functional theory calculations reveal existence of molecule-substrate interfacial charge-transfer dipole, which, although overlooked previously, drives the dominant Hg(ω1) excitation. This charge-transfer dipole is not specific but must be general at interfaces, influencing vibronic coupling in charge transport.
Individual superatoms were assembled into more complicated nanostructures for diversify their physical properties. Magnetism of assembled superatoms remains, however, ambiguous, particularly in terms of its distance dependence. Here, we report density functional theory calculations on the distance-dependent magnetism of transition metal embedded Au6Te8Se12 (ATS) superatomic dimers. Among the four considered transition metals, which include V, Cr, Mn and Fe, the Cr-embedded Au6Te12Se8 (Cr@ATS) is identified as the most suitable for exploring the inter-superatomic distance-dependent magnetism. We thus focused on Cr@ATS superatomic dimers and found an inter-superatomic magnetization-distance oscillation where three transitions occur for magnetic ordering and/or anisotropy at different inter-superatomic distances. As the inter-superatomic distance elongates, a ferromagnetism (FM)-to-antiferromagnetic (AFM) transition and a sequential AFM-to-FM transition occur, ascribed to competitions among Pauli repulsion and kinetic-energy-gains in formed inter-superatomic Cr-Au-Au-Cr covalent bonds and Te-Te quasi-covalent bonds. For the third transition, in-plane electronic hybridization contributes to the stabilization of the AFM configuration. This work unveils two mechanisms for tuning magnetism through non-covalent interactions and provides a strategy for manipulating magnetism in superatomic assemblies.
Yangliu Wu, Zhaozhuo Zeng, Haipeng Lu, Xiaocang Han, Chendi Yang, Nanshu Liu, Xiaoxu Zhao, Liang Qiao, Wei Ji*, Renchao Che, Longjiang Deng*, Peng Yan* and Bo Peng*
Abstract:
Multiferroic materials have been intensively pursued to achieve the mutual control of electric and magnetic properties. The breakthrough progress in 2D magnets and ferroelectrics encourages the exploration of low-dimensional multiferroics, which holds the promise of understanding inscrutable magnetoelectric coupling and inventing advanced spintronic devices. However, confirming ferroelectricity with optical techniques is challenging in 2D materials, particularly in conjunction with antiferromagnetic orders in single- and few-layer multiferroics. Here, we report the discovery of 2D vdW multiferroic with out-of plane ferroelectric polarization in trilayer NiI2 device, as revealed by scanning reflective magnetic circular dichroism microscopy and ferroelectric hysteresis loops. The evolution between ferroelectric and antiferroelectric phases has been unambiguously observed. Moreover, the magnetoelectric interaction is directly probed by magnetic control of the multiferroic domain switching. This work opens up opportunities for exploring new multiferroic orders and multiferroic physics at the limit of single or few atomic layers, and for creating advanced magnetoelectronic devices.
Realizing magnetic skyrmions in two-dimensional (2D) van der Waals (vdW) ferromagnets offers unparalleled prospects for future spintronic applications. The room-temperature ferromagnet Fe3GaTe2 provides an ideal platform for tailoring these magnetic solitons. Here, skyrmions of distinct topological charges are artificially introduced and spatially engineered using magnetic force microscopy (MFM). The skyrmion lattice is realized by specific field-cooling process, and can be further controllably erased and painted via delicate manipulation of tip stray field. The skyrmion lattice with opposite topological charges (S = +1 or -1) can be tailored at the target regions to form topological skyrmion junctions (TSJs) with specific configurations. The delicate interplay of TSJs and spin-polarized device current were finally investigated via the in-situ transport measurements, alongside the topological stability of TSJs. Our results demonstrate that Fe3GaTe2 not only serves as a potential building block for room-temperature skyrmion-based spintronic devices, but also presents promising prospects for Fe3GaTe2-based heterostructures with the engineered topological spin textures.