Band alignment and interlayer hybridization in monolayer organic/WSe2 heterojunction

Band alignment and interlayer hybridization in monolayer organic/WSe2 heterojunction

Nano Research 15, 1276–1281 (2022)

Yanping Guo, Linlu Wu, Jinghao Deng, Linwei Zhou, Wei Jiang, Shuangzan Lu, Da Huo, Jiamin Ji, Yusong Bai, Xiaoyu Lin, Shunping Zhang, Hongxing Xu, Wei Ji & Chendong Zhang

Abstract

Semiconducting heterojunctions (HJs), comprised of atomically thin transition metal dichalcogenides (TMDs), have shown great potentials in electronic and optoelectronic applications. Organic/TMD hybrid bilayers hold enhanced pumping efficiency of interfacial excitons, tunable electronic structures and optical properties, and other superior advantages to these inorganic HJs. Here, we report a direct probe of the interfacial electronic structures of a crystalline monolayer (ML) perylene-3,4,9,10-tetracarboxylic-dianhydride (PTCDA)/ML-WSe2 HJ using scanning tunneling microscopy, photoluminescence, and first-principle calculations. Strong PTCDA/WSe2 interfacial interactions lead to appreciable hybridization of the WSe2 conduction band with PTCDA unoccupied states, accompanying with a significant amount of PTCDA-to-WSe2 charge transfer (by 0.06 e/PTCDA). A type-II band alignment was directly determined with a valence band offset of ∼ 1.69 eV, and an apparent conduction band offset of ∼ 1.57 eV. Moreover, we found that the local stacking geometry at the HJ interface differentiates the hybridized interfacial states.

Localized spin-orbit polaron in magnetic Weyl semimetal Co3Sn2S2

Localized spin-orbit polaron in magnetic Weyl semimetal Co3Sn2S2

Nature Communications 11, 5613 (2020)

Ruisong Ma, Qi Wang, Qiangwei Yin, Hechang Lei, Wei Ji, Shixuan Du, Haitao Yang, Wenhong Wang, Chengmin Shen, Xiao Lin, Enke Liu, Baogen Shen, Ziqiang Wang, Hong-Jun Gao

Abstract

The kagome lattice Co3Sn2S2 exhibits the quintessential topological phenomena of a magnetic Weyl semimetal such as the chiral anomaly and Fermi-arc surface states. Probing its magnetic properties is crucial for understanding this correlated topological state. Here, using spin-polarized scanning tunneling microscopy/spectroscopy (STM/S) and non-contact atomic force microscopy (nc-AFM) combined with first-principle calculations, we report the discovery of localized spin-orbit polarons (SOPs) with three-fold rotation symmetry nucleated around single S-vacancies in Co3Sn2S2. The SOPs carry a magnetic moment and a large diamagnetic orbital magnetization of a possible topological origin associated relating to the diamagnetic circulating current around the S-vacancy. Appreciable magneto-elastic coupling of the SOP is detected by nc-AFM and STM. Our findings suggest that the SOPs can enhance magnetism and more robust time-reversal-symmetry-breaking topological phenomena. Controlled engineering of the SOPs may pave the way toward practical applications in functional quantum devices.