Band alignment and interlayer hybridization in monolayer organic/WSe2 heterojunction
Nano Research 15, 1276–1281 (2022)
Yanping Guo, Linlu Wu, Jinghao Deng, Linwei Zhou, Wei Jiang, Shuangzan Lu, Da Huo, Jiamin Ji, Yusong Bai, Xiaoyu Lin, Shunping Zhang, Hongxing Xu, Wei Ji & Chendong Zhang
Abstract
Semiconducting heterojunctions (HJs), comprised of atomically thin transition metal dichalcogenides (TMDs), have shown great potentials in electronic and optoelectronic applications. Organic/TMD hybrid bilayers hold enhanced pumping efficiency of interfacial excitons, tunable electronic structures and optical properties, and other superior advantages to these inorganic HJs. Here, we report a direct probe of the interfacial electronic structures of a crystalline monolayer (ML) perylene-3,4,9,10-tetracarboxylic-dianhydride (PTCDA)/ML-WSe2 HJ using scanning tunneling microscopy, photoluminescence, and first-principle calculations. Strong PTCDA/WSe2 interfacial interactions lead to appreciable hybridization of the WSe2 conduction band with PTCDA unoccupied states, accompanying with a significant amount of PTCDA-to-WSe2 charge transfer (by 0.06 e/PTCDA). A type-II band alignment was directly determined with a valence band offset of ∼ 1.69 eV, and an apparent conduction band offset of ∼ 1.57 eV. Moreover, we found that the local stacking geometry at the HJ interface differentiates the hybridized interfacial states.