六名成员参加“第四届团簇科学与原子制造学术研讨会”

六名成员参加“第四届团簇科学与原子制造学术研讨会”

2023年4月21-23日,中国人民大学物理学院季威教授携刘南舒博士后以及郭的坪、伍琳璐、官雨柔、戴佳琦等四名博士生赴西安参加了第四届“团簇科学与原子制造学术研讨会”。季威教授受会议主办方邀请作了题为“低维超原子晶体中的特殊电子态”的报告。

季威教授在作报告

刘南舒、郭的坪、伍琳璐、官雨柔、戴佳琦等成员分别在会议中展示了题为 “Magnetic coupling in superatom Mn@Sn12 assembly” (Liu), “Controllable dimensionality conversion between 1D and 2D CrCl3 magnetic nanostructures” (Guo), “Interweaving Polar Charge Orders in a Layered Metallic Superatomic Crystal” (Wu), “Magnetization-distance oscillation induced by competing interactions in Cr doped Au6Te12Se8 superatomic assembly” (Guan) 和“One-Step Exfoliation Method for Plasmonic Activation of Large-Area 2D Crystals” (Dai) 的墙报,均获得会议主办方颁发的优秀墙报奖状。

(左图)不愿透露样貌的郭师姐和她的墙报;(右图)伍琳璐和戴佳琦在她们的墙报前合影

第四届“团簇科学与原子制造学术研讨会”由西安交通大学物理学院物质非平衡合成与调控教育部重点实验室、南京大学物理学院和大连理工大学三束材料改性教育部重点实验室联合主办;西安交通大学激光与粒子束科学技术研究所承办。会议主题是交流近年来原子与分子及团簇物理、原子制造和纳米科技方面的研究进展,探讨本领域的未来发展方向。季威研究组成员为参与本次会议做了充分准备,并期待下次参会的科研成果能有在团簇及原子制造领域有新的突破。

Two-Dimensional Magnetic Semiconducting Heterostructures of Single-Layer CrI3–CrI2

Two-Dimensional Magnetic Semiconducting Heterostructures of Single-Layer CrI3–CrI2

ACS Appl. Mater. Interfaces 15, 19574–19581 (2023)

Peigen Li, Nanshu Liu, Jihai Zhang, Shenwei Chen, Xuhan Zhou, Donghui Guo, Cong Wang, Wei Ji, and Dingyong Zhong

Single-layer heterostructures of magnetic materials are unique platforms for studying spin-related phenomena in two dimensions (2D) and have promising applications in spintronics and magnonics. Here, we report the fabrication of 2D magnetic lateral heterostructures consisting of single-layer chromium triiodide (CrI3) and chromium diiodide (CrI2). By carefully adjusting the abundance of iodine based on molecular beam epitaxy, single-layer CrI3–CrI2 heterostructures were grown on Au(111) surfaces with nearly atomic-level seamless boundaries. Two distinct types of interfaces, i.e., zigzag and armchair interfaces, have been identified by means of scanning tunneling microscopy. Our scanning tunneling spectroscopy study combined with density functional theory calculations indicates the existence of spin-polarized ground states below and above the Fermi energy localized at the boundary. Both the armchair and zigzag interfaces exhibit semiconducting nanowire behaviors with different spatial distributions of density of states. Our work presents a novel low-dimensional magnetic system for studying spin-related physics with reduced dimensions and designing advanced spintronic devices.

DOI: 10.1021/acsami.2c22494

刘南舒 博士Liu, Nanshu (Dr.)

刘南舒 博士
Liu, Nanshu (Dr.)

刘南舒,西南大学物理科学与技术学院 副教授

电子邮箱:liuns0215@swu.edu.cn
URL: 刘南舒 – 西南大学物理科学与技术学院

教育经历

(1) 2016-09至2021-06,大连理工大学,凝聚态物理,博士

(2) 2012-09至2016-06,西北师范大学,物理学,学士

工作经历

2021-09至2024-06,中国人民大学物理学系,博士后
2024-09至今,西南大学物理科学与技术学院,讲师/副教授

研究方向

利用密度泛函理论探索低维材料的磁性、电极化等新奇物性及其合理调控。

Selected Publications (代表性论文)

(1) Nanshu Liu*, Cong Wang, Wei Ji*, Recent research advances in two-dimensional magnetic materials, Acta Phys. Sinica 71, 127504 (2022)

(2) Nanshu Liu, Si Zhou*, Jijun Zhao, Photoinduced spin injection and ferromagnetism in 2D group III monochalcogenides, J. Phys. Chem. Lett. 153, 590 (2022)

(3) Nanshu Liu, Si Zhou*, Jijun Zhao, Visible-light overall water splitting on g-C3N4 decorated by subnanometer oxide clusters, Mater. Today Phys., 16, 100312 (2021)

(4) Nanshu Liu, Yanyan Zhao, Si Zhou*, Jijun Zhao, CO2 reduction on p-block metal oxide overlayers on metal substrates—2D MgO as a prototype, J. Mater. Chem. A, 8, 5688 (2020)

(5) Nanshu Liu, Si Zhou*, Jijun Zhao, High-Curie-temperature ferromagnetism in bilayer CrI3 on bulk semiconducting substrates, Phys. Rev. Mater., 4, 094003 (2020)

(6) Nanshu Liu, Junfeng Zhang*, Si Zhou*, Jijun Zhao, Tuning the electronic properties of bilayer black phosphorene with the twist angle, J. Mater. Chem. C, 8, 6264 (2020)

(7) Shaofeng Li#, Yan Zhang#, Nanshu Liu#, et. al, Operando revealing dynamic reconstruction of NiCo carbonate hydroxide for high-rate energy storage, Joule, 4, 673 (2020)

Recent research advances in two-dimensional magnetic materials

Recent research advances in two-dimensional magnetic materials

Acta Phys. Sinica 71, 127504 (2022)

Liu, Nan-Shu; Wang, Cong; Ji, Wei

Two-dimensional (2D) magnetic materials with magnetic anisotropy can form magnetic order at finitetemperature and monolayer limit. Their macroscopic magnetism is closely related to the number of layers andstacking forms, and their magnetic exchange coupling can be regulated by a variety of external fields. Thesenovel properties endow 2D magnetic materials with rich physical connotation and potential application value,thus having attracted extensive attention. In this paper, the recent advances in the experiments and theoreticalcalculations of 2D magnets are reviewed. Firstly, the common magnetic exchange mechanisms in several 2Dmagnetic materials are introduced. Then, the geometric and electronic structures of some 2D magnets and theirmagnetic coupling mechanisms are introduced in detail according to their components. Furthermore, we discusshow to regulate the electronic structure and magnetism of 2D magnets by external (field modulation andinterfacial effect) and internal (stacking and defect) methods. Then we discuss the potential applications ofthese materials in spintronics devices and magnetic storage. Finally, the encountered difficulties and challengesof 2D magnetic materials and the possible research directions in the future are summarized and prospected. DOI: 10.7498/aps.71.20220301

Two-Dimensional Room-Temperature Magnetic Nonstoichiometric Fe7Se8 Nanocrystals: Controllable Synthesis and Magnetic Behavior

Two-Dimensional Room-Temperature Magnetic Nonstoichiometric Fe7Se8 Nanocrystals: Controllable Synthesis and Magnetic Behavior

Nano Letters 22, 1242–1250 (2022)

Zijing Zhao, Jian Zhou, Luhao Liu, Nanshu Liu, Jianqi Huang, Biao Zhang, Wei Li, Yi Zeng, Teng Zhang, Wei Ji, Teng Yang, Zhidong Zhang, Songlin Li & Yanglong Hou

Abstract

Two-dimensional (2D) magnetic materials have attracted significant attention for promising applications in energy-saving logic and robust memory devices. However, most 2D magnets discovered so far typically feature drawbacks for practical applications due to low critical temperatures. Herein, we synthesize ultrathin room-temperature (RT) magnetic Fe7Se8 nanoflakes via the space-confined chemical vapor deposition method. It is found that the appropriate supply and control of Se concentration in the reaction chamber is crucial for synthesizing high-quality nonstoichiometric Fe7Se8 nanoflakes. Cryogenic electrical and magnetic characterizations reveal the emergence of spin reorientation at ∼130 K and the survival of long-range magnetic ordering up to room temperature. The RT magnetic domain structures with different thicknesses are also uncovered by magnetic force microscopy. Moreover, theoretical calculations confirm the spin configuration and metallic band structure. The outstanding characteristics exhibited by Fe7Se8 nanoflakes, including RT magnetism, spin reorientation property, and good electrical conductivity, make them a potential candidate for RT spintronics.