Chemical Doping Reveals Band-like Charge Transport at Grain Boundaries in Organic Transistors

Chemical Doping Reveals Band-like Charge Transport at Grain Boundaries in Organic Transistors

Yating Li, Mengmeng Niu, Junpeng Zeng, Quan Zhou, Xu Wu, Wei Ji, Yeliang Wang, Ren Zhu, Jingsi Qiao, Jianbin Xu, Yi Shi, Xinran Wang, and Daowei He

An in-depth understanding of the electronic structure of 2H-MoTe2 at the atomic layer limit is a crucial step towards its exploitation in nanoscale devices. Here, we show that millimeter-sized monolayer (ML) MoTe2 samples, as well as smaller sized bilayer (BL) samples, can be obtained using the mechanical exfoliation technique. The electronic structure of these materials is investigated by Angle-Resolved Photoemission Spectroscopy (ARPES) for the first time and Density Functional
Theory (DFT) calculations. The comparison between experiments and theory allows us to describe ML MoTe2 as a semiconductor with direct gap at K point. This scenario is reinforced by the experimental observation of the conduction band minimum at K in Rb-doped ML MoTe2, resulting in a gap of at least 0.924 eV. In the BL MoTe2 system the maxima of the bands at Γ and K display very similar energies, thus leaving the door open to a direct gap scenario, in analogy to WSe2. The monotonic increase in the separation between spin-split bands at K while moving from ML to BL and bulk-like MoTe2 is attributed to interlayer coupling. Our findings can be considered as a reference to understand Quantum Anomalous and Fractional Quantum Anomalous Hall Effects recently discovered in ML and BL MoTe2 based moir´ e heterostructures. Organic semiconductors are highly promising as channel materials for energy-efficient, cost-effective, and flexible electronics. However, grain boundaries (GBs) can cause significant device performance variation, posing a major challenge for the development of high-performance organic circuits. In this work, we effectively passivated GB-induced traps in monolayer organic thin-film transistors (OTFTs) via p-type doping with the organic salt TrTPFB. The doping strategy broadens the mobility edge, effectively shielding GB-induced energy barriers and Coulomb scattering, and promotes deeper nonlocalized hybridization states for conduction. Consequently, the charge transport mechanism transitions from multiple trapping and release (MTR) to a more band-like behavior, even when GBs are present within the device channel. The doped OTFTs demonstrate ultralow mobility variation (1.4%) and threshold voltage variation (4.9%), as well as record-low contact resistant of RC = 0.6 Ω·cm, outperforming most single-crystal technologies. These performance metrics render doped monolayer polycrystalline films highly promising candidates for industrial-scale organic electronics.

Ferromagnetism and correlated insulating states in monolayer Mo33Te56

Ferromagnetism and correlated insulating states in monolayer Mo33Te56

Zemin Pan#, Wenqi Xiong#, Jiaqi Dai#, Hui Zhang#, Yunhua Wang, Tao Jian, Xingxia Cui, Jinghao Deng, Xiaoyu Lin, Zhengbo Cheng, Yusong Bai, Chao Zhu, Da Huo, Geng Li, Min Feng, Jun He, Wei Ji*, Shengjun Yuan*, Fengcheng Wu*, Chendong Zhang*, and Hong-Jun Gao

Although the kagome model is fundamentally two-dimensional, the essential kagome physics, i.e., the kagome-bands-driven emergent electronic states, has yet to be explored in the monolayer limit. Here, we present the experimental realization of kagome physics in monolayer Mo33Te56, showcasing both ferromagnetic ordering and a correlated insulating state with an energy gap of up to 15 meV. Using a combination of scanning tunnelling microscopy and theoretical calculations, we find a structural phase of the monolayer Mo-Te compound, which forms a mirror-twin boundary loop superlattice exhibiting kagome geometry and multiple sets of kagome bands. The partial occupancy of these nearly flat bands results in Fermi surface instability, counteracted by the emergence of ferromagnetic order (with a coercive field ~0.1 T, as observed by spin-polarized STM) and the opening of a correlated hard gap. Our work establishes a robust framework featuring well-defined atomic and band structures, alongside the intrinsic two-dimensional nature, essential for the rigorous examination of kagome physics.

Synthesis and Electronic Structure of Atomically Thin 2H-MoTe2

Synthesis and Electronic Structure of Atomically Thin 2H-MoTe2

Wenjuan Zhao#, Xieyu Zhou#, Dayu Yan#, Yuan Huang*, Cong Li, Qiang Gao, Paolo Moras, Polina M. Sheverdyaeva, Hongtao Rong, Yongqing Cai, Eike F. Schwier, Xixia Zhang, Cheng Shen, Yang Wang, Yu Xu, Wei Ji, Chen Liu, Youguo Shi, Lin Zhao, Lihong Bao, Qingyan Wang, Kenya Shimada, Xutang Tao, Guangyu Zhang, Hongjun Gao, Zuyan Xu, Xingjiang Zhou*, Guodong Liu*

An in-depth understanding of the electronic structure of 2H-MoTe2 at the atomic layer limit is a crucial step towards its exploitation in nanoscale devices. Here, we show that millimeter-sized monolayer (ML) MoTe2 samples, as well as smaller sized bilayer (BL) samples, can be obtained using the mechanical exfoliation technique. The electronic structure of these materials is investigated by Angle-Resolved Photoemission Spectroscopy (ARPES) for the first time and Density Functional
Theory (DFT) calculations. The comparison between experiments and theory allows us to describe ML MoTe2 as a semiconductor with direct gap at K point. This scenario is reinforced by the experimental observation of the conduction band minimum at K in Rb-doped ML MoTe2, resulting in a gap of at least 0.924 eV. In the BL MoTe2 system the maxima of the bands at Γ and K display very similar energies, thus leaving the door open to a direct gap scenario, in analogy to WSe2. The monotonic increase in the separation between spin-split bands at K while moving from ML to BL and bulk-like MoTe2 is attributed to interlayer coupling. Our findings can be considered as a reference to understand Quantum Anomalous and Fractional Quantum Anomalous Hall Effects recently discovered in ML and BL MoTe2 based moir´ e heterostructures.

Electronic Janus lattice and kagome-like bands in coloring-triangular MoTe2 monolayers

Electronic Janus lattice and kagome-like bands in coloring-triangular MoTe2 monolayers

Nature Communications 14, 6320 (2023).

Le Lei#, Jiaqi Dai#, Haoyu Dong#, Yanyan Geng, Feiyue Cao, Cong Wang, Rui Xu, Fei Pang, Zheng-Xin Liu, Fangsen Li, Zhihai Cheng*, Guang Wang* and Wei Ji*

Abstract: Polymorphic structures of transition metal dichalcogenides (TMDs) host exotic electronic states, like charge density wave and superconductivity. However, the number of these structures is limited by crystal symmetries, which poses a challenge to achieving tailored lattices and properties both theoretically and experimentally. Here, we report a coloring triangle (CT) latticed MoTe2 monolayer, termed CT-MoTe2, constructed by controllably introducing uniform and ordered mirror-twin-boundaries into a pristine monolayer in molecular beam epitaxy. Low-temperature scanning tunneling microscopy and spectroscopy (STM/STS) together with theoretical calculations reveal that the monolayer has an electronic Janus lattice, i.e., an energy-dependent atomic-lattice and a Te pseudo-sublattice, and shares the identical geometry with the Mo5Te8 layer. Dirac-like and flat electronic bands inherently existing in the CT lattice are identified by two broad and two prominent peaks in STS spectra, respectively, and verified with density-functional-theory calculations. Two types of intrinsic domain boundaries were observed, one of which the electronic-Janus-lattice feature maintains, implying potential applications as an energy-tunable electron-tunneling barrier in future functional devices.

DOI: 10.1038/s41467-023-42044-5; arXiv:2302.06166