Mass transport induced structural evolution and healing of sulfur vacancy lines and Mo chain in monolayer MoS2
Rare Metals 41, 333–341 (2022)
Xiao-Wei Wang, Lin-Fang Hou, Wei Huang, Xi-Biao Ren, Wei Ji & Chuan-Hong Jin
Abstract
Defects play vital roles in tailoring structures and properties of materials including the atomically thin two-dimensional (2D) materials, and increasing demands are requested to find effective ways to realize the defect engineering, i.e., tuning the defects and thus the materials’ structure–property in a well-controlled way. Herein, we propose a novel method to tune the structures and configurations of one-dimensional (1D) line defects in monolayer MoS2 via mass transport induced structural transformation. By using atomic-resolved annular dark-field scanning transmission electron microscopy (ADF-STEM), we demonstrate in situ that sulfur vacancy line defect can be healed locally into defect-free MoS2 lattice via the desorption of Mo atoms from vacancy lines and adsorption into a moving Mo cluster. Furthermore, directional transport of Mo atoms (or Mo cluster) along the sulfur vacancy lines can induce the formation of Mo chains. Such a mass transport induced defect tuning provides more operational routes for the rational defect designing and property tuning in MoS2 as well as other related 2D materials.