Strain-engineered rippling at the bilayer-MoS2 interface identified by advanced atomic force microscopy

Strain-engineered rippling at the bilayer-MoS2 interface identified by advanced atomic force microscopy

Haoyu Dong, Songyang Li, Shuo Mi, Jianfeng Guo, Zhaxi Suonan, Hanxiang Wu, Yanyan Geng, Manyu Wang, Huiwen Xu, Li Guan,Fei Pang, Wei Ji, Rui Xu, Zhihai Cheng

Hafnia-based ferroelectric materials, like Hf0.5Zr0.5O2 (HZO), have received tremendous attention owing to their potentials for building ultra-thin ferroelectric devices. The orthorhombic(O)-phase of HZO is ferroelectric but metastable in its bulk form under ambient conditions, which poses a considerable challenge to maintaining the operation performance of HZO-based ferroelectric devices. Here, we theoretically addressed this issue that provides parameter spaces for stabilizing the O-phase of HZO thin-films under various conditions. Three mechanisms were found to be capable of lowering the relative energy of the O-phase, namely, more significant surface-bulk portion of (111) surfaces, compressive caxis strain, and positive electric fields. Considering these mechanisms, we plotted two ternary phase diagrams for HZO thin-films where the strain was applied along the in-plane uniaxial and biaxial, respectively. These diagrams indicate the O-phase could be stabilized by solely shrinking the film-thickness below 12.26 nm, ascribed to its lower surface energies. All these results shed considerable light on designing more robust and higher-performance ferroelectric devices.

A “Click” Reaction to Engineer MoS2 Field-Effect Transistors with Low Contact Resistance

A “Click” Reaction to Engineer MoS2 Field-Effect Transistors with Low Contact Resistance

ACS Nano 16(12), 20647–20655(2022)

Jialei Miao#, Linlu Wu#, Zheng Bian, Qinghai Zhu, Tianjiao Zhang, Xin Pan, Jiayang Hu, Wei Xu, Yeliang Wang, Yang Xu, Bin Yu, Wei Ji, Xiaowei Zhang*, Jingsi Qiao*, Paolo Samorì*, and Yuda Zhao*

Abstract

Two-dimensional (2D) materials with the atomically thin thickness have attracted great interest in the post-Moore’s Law era because of their tremendous potential to continue transistor downscaling and offered advances in device performance at the atomic limit. However, the metal–semiconductor contact is the bottleneck in field-effect transistors (FETs) integrating 2D semiconductors as channel materials. A robust and tunable doping method at the source and drain region of 2D transistors to minimize the contact resistance is highly sought after. Here we report a stable carrier doping method via the mild covalent grafting of maleimides on the surface of 2D transition metal dichalcogenides. The chemisorbed interaction contributes to the efficient carrier doping without degrading the high-performance carrier transport. Density functional theory results further illustrate that the molecular functionalization leads to the mild hybridization and the negligible impact on the conduction bands of monolayer MoS2, avoiding the random scattering from the dopants. Differently from reported molecular treatments, our strategy displays high thermal stability (above 300 °C) and it is compatible with micro/nano processing technology. The contact resistance of MoS2 FETs can be greatly reduced by ∼12 times after molecular functionalization. The Schottky barrier of 44 meV is achieved on monolayer MoS2 FETs, demonstrating efficient charge injection between metal and 2D semiconductor. The mild covalent functionalization of molecules on 2D semiconductors represents a powerful strategy to perform the carrier doping and the device optimization.

DOI: 10.1021/acsnano.2c07670

Ferroelectricity in untwisted heterobilayers of transition metal dichalcogenides

Ferroelectricity in untwisted heterobilayers of transition metal dichalcogenides

Science 376, 973-978 (2022)

Lukas Rogée, Lvjin Wang, Yi Zhang, Songhua Cai, Peng Wang, Manish Chhowalla, Wei Ji & Shu Ping Lau

Two-dimensional materials with out-of-plane (OOP) ferroelectric and piezoelectric properties are highly desirable for the realization of ultrathin ferro- and piezoelectronic devices. We demonstrate unexpected OOP ferroelectricity and piezoelectricity in untwisted, commensurate, and epitaxial MoS2/WS2 heterobilayers synthesized by scalable one-step chemical vapor deposition. We show d33 piezoelectric constants of 1.95 to 2.09 picometers per volt that are larger than the natural OOP piezoelectric constant of monolayer In2Se3 by a factor of ~6. We demonstrate the modulation of tunneling current by about three orders of magnitude in ferroelectric tunnel junction devices by changing the polarization state of MoS2/WS2 heterobilayers. Our results are consistent with density functional theory, which shows that both symmetry breaking and interlayer sliding give rise to the unexpected properties without the need for invoking twist angles or moiré domains.

Real-space detection and manipulation of two-dimensional quantum well states in few-layer MoS2

Real-space detection and manipulation of two-dimensional quantum well states in few-layer MoS2

Phys. Rev. B 105, L081404 (2022)

Yu Wang, Linlu Wu, Zheng Wei, Zijia Liu, Peng Cheng, Yiqi Zhang, Baojie Feng, Guangyu Zhang, Wei Ji, Kehui Wu & Lan Chen

Abstract

Quantum confinement has remarkable effects on the band structures and optoelectronic performance of semiconducting materials. The confinement of electronic states developed along van der Waals (vdW) gaps in transition metal dichalcogenides (TMDs) has unique advantages compared with those of artificial quantum wells. Here, we detected the quantized electronic states of few-layered MoS2 in real space using scanning tunneling microscope/spectroscopy. Combined with density-functional theory calculations, the quantized states were attributed to quantum-well states (QWSs), and the number of the states was strictly determined by the MoS2 layer thickness. We further regulated the QWSs of few-layered MoS2 by tuning the strength of interlayer hybridization through directly adjusting the interlayer distance. More importantly, substitutional defects in few-layered MoS2 were introduced to control the energy eigenvalues of the QWSs. Our work proves the existence of the interlayer electronic hybridization in conventional weakly coupled vdW interfaces, and provides a way to manipulate the electronic states of few-layered TMD through controlling interlayer hybridization. It also suggests potential applications of quantum-well materials in subband transitions, spin splitting, photoexcitation, and electronic devices.

An efficient route to prepare suspended monolayer for feasible optical and electronic characterizations of two-dimensional materials

An efficient route to prepare suspended monolayer for feasible optical and electronic characterizations of two-dimensional materials

InfoMat 4:e12274 (2022)

Yuan Huang, Yun-Kun Wang, Xin-Yu Huang, Guan-Hua Zhang, Xu Han, Yang Yang, Yunan Gao, Lei Meng, Yushu Wang, Guang-Zhou Geng, Li-Wei Liu, Lin Zhao, Zhi-Hai Cheng, Xin-Feng Liu, Ze-Feng Ren, Hui-Xia Yang, Yufeng Hao, Hong-Jun Gao, Xing-Jiang Zhou, Wei Ji & Ye-Liang Wang

Abstract

Two-dimensional (2D) materials are highly sensitive to substrates, interfaces, and the surrounding environments. Suspended 2D materials are free from substrate-induced effects, thus an ideal approach to study their intrinsic properties. However, it is very challenging to prepare large-area suspended 2D materials with high efficiency. Here we report a universal method, based on pretreatments of densely patterned hole array substrates with either oxygen-plasma or gold film deposition, to prepare large-area suspended mono- and few-layer 2D materials. Multiple structural, optical, and electrical characterization tools were used to fully evaluate the improved performance of various suspended 2D layers. Some of these observations reported in this study are: (1) Observation of a new Raman low frequency mode for the suspended MoS2; (2) Significantly stronger photoluminescence (PL) and second harmonic generation (SHG) signals of suspended WSe2, which enables the study of new optical transition processes; (3) The low energy electron diffraction pattern on suspended MoS2 also exhibits much sharper spots than that on the supported area; and (4) The mobility of suspended graphene device approaches 300 000 cm2 V−1 s−1, which is desirable to explore the intrinsic properties of graphene. This work provides an innovative and efficient route for fabricating suspended 2D materials, and we expect that it can be broadly used for studying intrinsic properties of 2D materials and in applications of hybrid active nanophotonic and electronic devices.