Nanshu Liu, Cong Wang, Changlin Yan, Changsong Xu, Jun Hu, Yanning Zhang, and Wei Ji
Abstract:
Interlayer magnetism was tuned by many interlayer means, e.g., stacking, distance, and external fields in two-dimensional (2D) magnets. As an exception, the interlayer magnetism of CrSBr few layers was, however, experimentally changed by applied intralayer strains [Nat. Nanotechnol. 17, 256 (2022)], the mechanism of which is yet to be unveiled. Here, we uncovered its mechanism by investigating in-plane strained bilayer CrSBr using density functional theory calculations. Under in-plane tensile strain, wavefunction overlaps are strengthened for Br p electrons within each CrSBr layer, which delocalizes intralayer electrons and, as a consequence, promotes interlayer electron hopping. A negative interlayer Poisson’s ratio also enlarges interlayer spacing for bilayer CrSBr, which reduces the interlayer Pauli repulsion. This joint effect, further verified by examining interlayer sliding and interfacial element substitution, leads to an interlayer antiferromagnetic to ferromagnetic transition, consistent with the previous experimental observation. This mechanism enables a route to tune interlayer magnetism by modifying intralayer electron localization in 2D magnets.
Nanshu Liu, Cong Wang, Changlin Yan, Changsong Xu, Jun Hu, Yanning Zhang, and Wei Ji
Abstract:
A recent experiment reported type-II multiferroicity in monolayer (ML) NiI2 based on a presumed spiral magnetic configuration (Spiral-B), which is, as we found here, under debate in the ML limit. Freestanding ML NiI2 breaks its C3 symmetry, as it prefers a striped antiferromagnetic order (AABB-AFM) along with an intralayer antiferroelectric (AFE) order. However, substrate confinement may preserve the C3 symmetry and/or apply tensile strain to the ML. This leads to another spiral magnetic order (SpiralIVX), while 2L shows a different order (SpiralVX) and Spiral-B dominates in thicker layers. Thus, three multiferroic phases, namely, SpiralB+FE, Spiral-IVX +FE, Spiral-VX+FE, and an anti-multiferroic AABB-AFM+AFE one, show layer-thickness-dependent and geometry-dependent dominance, ascribed to competitions among thickness-dependent Kitaev, biquadratic, and Heisenberg spin–exchange interactions and single-ion magnetic anisotropy. Our theoretical results clarify the debate on the multiferroicity of ML NiI2 and shed light on the role of layer-stacking-induced changes in noncollinear spin–exchange interactions and magnetic anisotropy in thickness-dependent magnetism.
Deping Guo (郭的坪)#, Cong Wang (王聪)#, Lvjin Wang (王侣锦), Yunhao Lu (陆赟豪), Hua Wu (吴骅), Yanning Zhang (张妍宁), and Wei Ji (季威)*
Abstract:
Two-dimensional (2D) van der Waals magnetic materials have promising and versatile electronic and magnetic properties in the 2D limit, indicating a considerable potential to advance spintronic applications. Theoretical predictions thus far have not ascertained whether monolayer VCl3 is a ferromagnetic (FM) or anti-FM monolayer; this also remains to be experimentally verified. We theoretically investigate the influence of potential factors, including 𝐶3 symmetry breaking, orbital ordering, epitaxial strain, and charge doping, on the magnetic ground state. Utilizing first-principles calculations, we predict a collinear type-III FM ground state in monolayer VCl3 with a broken 𝐶3 symmetry, wherein only the former two of three 𝑡2g orbitals (𝑎1g, 𝑒 𝜋 g2 and 𝑒 𝜋 g1) are occupied. The atomic layer thickness and bond angles of monolayer VCl3 undergo abrupt changes driven by an orbital ordering switch, resulting in concomitant structural and magnetic phase transitions. Introducing doping to the underlying Cl atoms of monolayer VCl3 without 𝐶3 symmetry simultaneously induces in- and out-of-plane polarizations. This can achieve a multiferroic phase transition if combined with the discovered adjustments of magnetic ground state and polarization magnitude under strain. The establishment of an orbital-ordering driven regulatory mechanism can facilitate deeper exploration and comprehension of magnetic properties of strongly correlated systems in monolayer VCl3.
Mao-Peng Miao, Nanshu Liu, Wen-Hao Zhang, Jian-Wang Zhou, Dao-Bo Wang, Cong Wang, Wei Ji, and Ying-Shuang Fu
Abstract:
Noncollinear magnetic orders in monolayer van der Waals magnets are crucial for probing delicate magnetic interactions under minimal spatial constraints and advancing miniaturized spintronic devices. Despite their significance, achieving atomic-scale identification remains challenging. In this study, we utilized spin-polarized scanning tunneling microscopy and density functional theory calculations to identify spin-spiral orders in mono- and bi-layer NiI2, grown on graphene-covered SiC(0001) substrates. We discovered two distinct spin-spiral states with Q vectors aligning and deviating by 7° from the lattice direction, exhibiting periodicities of 4.54 and 5.01 times the lattice constant, respectively. These findings contrast with bulk properties and align closely with our theoretical predictions. Surprisingly, the finite sizes of monolayers induce incommensurability with the spin-spiral period, facilitating collective spin switching behavior under magnetic fields. Our research reveals intrinsic noncollinear magnetism at the monolayer limit with unprecedented resolution, paving the way for exploring novel spin phenomena.
Yuan Huang#, Yu-Hao Pan#, Rong Yang#, Li-Hong Bao, Lei Meng, Hai-Lan Luo, Yong-Qing Cai, Guo-Dong Liu, Wen-Juan Zhao, Zhang Zhou, Liang-Mei Wu, Zhi-Li Zhu, Ming Huang, Li-Wei Liu, Lei Liu, Peng Cheng, Ke-Hui Wu, Shi-Bing Tian, Chang-Zhi Gu, You-Guo Shi, Yan-Feng Guo, Zhi Gang Cheng, Jiang-Ping Hu, Lin Zhao, Guan-Hua Yang, Eli Sutter, Peter Sutter*, Ye-Liang Wang, Wei Ji*, Xing-Jiang Zhou* & Hong-Jun Gao*
Abstract:
Two-dimensional materials provide extraordinary opportunities for exploring phenomena arising in atomically thin crystals. Beginning with the first isolation of graphene, mechanical exfoliation has been a key to provide high-quality two-dimensional materials, but despite improvements it is still limited in yield, lateral size and contamination. Here we introduce a contamination-free, one-step and universal Au-assisted mechanical exfoliation method and demonstrate its effectiveness by isolating 40 types of single-crystalline monolayers, including elemental two-dimensional crystals, metal-dichalcogenides, magnets and superconductors. Most of them are of millimeter-size and high-quality, as shown by transfer-free measurements of electron microscopy, photo spectroscopies and electrical transport. Large suspended two-dimensional crystals and heterojunctions were also prepared with high-yield. Enhanced adhesion between the crystals and the substrates enables such efficient exfoliation, for which we identify a gold-assisted exfoliation method that underpins a universal route for producing large-area monolayers and thus supports studies of fundamental properties and potential application of two-dimensional materials.