Spin-polarized correlated insulator in monolayer MoTe2-x

Spin-polarized correlated insulator in monolayer MoTe2-x

Zemin Pan, Wenqi Xiong, Jiaqi Dai, Yunhua Wang, Tao Jian, Xingxia Cui, Jinghao Deng, Xiaoyu Lin, Zhengbo Cheng, Yusong Bai, Chao Zhu, Da Huo, Geng Li, Min Feng, Jun He, Wei Ji, Shengjun Yuan, Fengcheng Wu, Chendong Zhang, and Hong-Jun Gao

Flat electronic bands near the Fermi level provide a fertile playground for realizing interaction-driven correlated physics. To date, related experiments have mostly been limited to engineered multilayer systems (e.g., moiré systems). Herein, we report an experimental realization of nearly flat bands across the Fermi level in monolayer MoTe2-x by fabricating a uniformly ordered mirror twin boundary superlattice (corresponding to a stoichiometry of MoTe56/33). The kagome flat bands are discovered by combining scanning tunnelling microscopy and theoretical calculations. The partial filling nature of flat bands yields a correlated insulating state exhibiting a hard gap as large as 15 meV. Moreover, we observe pronounced responses of the correlated states to magnetic fields, providing evidence for a spin-polarized ground state. Our work introduces a monolayer platform that manifests strong correlation effects arising from flattened electronic bands.

Fe-Intercalation Dominated Ferromagnetism of van der Waals Fe3GeTe2

Fe-Intercalation Dominated Ferromagnetism of van der Waals Fe3GeTe2

Advanced Materials 35, 2302568 (2023)

Yueshen Wu, Yuxiong Hu, Cong Wang, Xiang Zhou, Xiaofei Hou, Wei Xia, Yiwen Zhang, Jinghui Wang, Yifan Ding, Jiadian He, Peng Dong, Song Bao, Jinsheng Wen, Yanfeng Guo, Kenji Watanabe, Takashi Taniguchi, Wei Ji, Zhu-Jun Wang, Jun Li

Fe3GeTe2 have proven to be of greatly intrigue. However, the underlying mechanism behind the varying Curie temperature (Tc) values remains a puzzle. Here, we explored the atomic structure of Fe3GeTe2 crystals exhibiting Tc values of 160, 210, and 230 K. The elemental mapping reveals a Fe-intercalation on the interstitial sites within the van der Waals gap of the high- Tc (210 and 230 K) samples, which are observed an exchange bias effect by electrical transport measurements, while Fe intercalation or the bias effect is absent in the low-Tc (160 K) samples. First-principles calculations further suggest that the Fe-intercalation layer may be responsible for the local antiferromagnetic coupling that gives rise to the exchange bias effect, and that the interlayer exchange paths greatly contributes to the enhancement of Tc. This discovery of the Fe-intercalation layer elucidates the mechanism behind the hidden antiferromagnetic ordering that underlies the enhancement of Tc in Fe3GeTe2.

DOI: 10.1002/adma.202302568

Controllable dimensionality conversionbetween 1D and 2D CrCl3 magneticnanostructures

Controllable dimensionality conversionbetween 1D and 2D CrCl3 magneticnanostructures

Nature Communications 14, 2465 (2023)

Shuangzan Lu†, Deping Guo†, Zhengbo Cheng†, Yanping Guo†, Cong Wang, Jinghao Deng, Yusong Bai, Cheng Tian, Linwei Zhou, Youguo Shi, Jun He*,Wei Ji*, Chendong Zhang*

The fabrication of one-dimensional (1D) magnetic systems on solid surfaces, although of high fundamental interest, has yet to be achieved for a crossover between two-dimensional (2D) magnetic layers and their associated 1D spin chain systems. In this study, we report the fabrication of 1D single-unit-cellwidth CrCl3 atomic wires and their stacked few-wire arrays on the surface of a van der Waals (vdW) superconductor NbSe2. Scanning tunneling microscopy/spectroscopy and first-principles calculations jointly revealed that the single wire shows an antiferromagnetic large-bandgap semiconducting state in an unexplored structure different from the well-known 2D CrCl3 phase. Competition among the total energies and nanostructure-substrate interfacial interactions of these two phases result in the appearance of the 1D phase. This phase was transformable to the 2D phase either prior to or after the growth for in situ or ex situ manipulations, in which the electronic interactions at the vdW interface play a nontrivial role that could regulate the dimensionality conversion and structural transformation between the 1D-2D CrCl3 phases.

DOI: 10.1038/s41467-023-38175-4

Frustrated ferromagnetic transition in AB-stacked honeycomb bilayer

Frustrated ferromagnetic transition in AB-stacked honeycomb bilayer

Science Bulletin 67(24), 2557-2563 (2022)

Shiyuan Wang#, Yao Wang#, Shaohua Yan#, Cong Wang#, Bingke Xiang, Keyi Liang, Qiushi He, Kenji Watanabe, Takashi Taniguchi, Shangjie Tian, Hechang Lei, Wei Ji, Yang Qi, Yihua Wang*

Abstract

In two-dimensional (2D) ferromagnets, anisotropy is essential for the magnetic ordering as dictated by the Mermin-Wagner theorem. But when competing anisotropies are present, the phase transition becomes nontrivial. Here, utilizing highly sensitive susceptometry of scanning superconducting quantum interference device microscopy, we probe the spin correlations of ABC-stacked CrBr3 under zero magnetic field. We identify a plateau feature in susceptibility above the critical temperature (�C) in thick samples. It signifies a crossover regime induced by the competition between easy-plane intralayer exchange anisotropy versus uniaxial interlayer anisotropy. The evolution of the critical behavior from the bulk to 2D shows that the competition between the anisotropies is magnified in the reduced dimension. It leads to a strongly frustrated ferromagnetic transition in the bilayer with fluctuation on the order of �C, which is distinct from both the monolayer and the bulk. Our observation demonstrates unconventional 2D critical behavior on a honeycomb lattice.

DOI: 10.1016/j.scib.2022.12.009

In-plane epitaxy-strain-tuning intralayer and interlayer magnetic coupling in CrSe2 and CrTe2 monolayers and bilayers

In-plane epitaxy-strain-tuning intralayer and interlayer magnetic coupling in CrSe2 and CrTe2 monolayers and bilayers

Phys. Rev. B 106, L081401 (2022)

Linlu Wu#, Linwei Zhou#, Xieyu Zhou, Cong Wang*, and Wei Ji*

Abstract

Mismatched lattice constants at a van der Waals epitaxy interface often introduce in-plane strains to the lattice of the epitaxial layer, termed epitaxy strain, wherein the strains do not follow the intralayer Poisson’s relation. In this study, we obtained the magnetic phase diagrams of CrSe2 and CrTe2 mono- and bilayers under epitaxy strain up to 8%, as predicted using density functional theory calculations. The magnetic phase diagrams indicate that the in-plane epitaxy strain manipulates either the intra- or interlayer magnetism. The in-plane strain varies the interlayer distance, defined using an interlayer Poisson’s ratio, which determines whether the interlayer magnetism follows a Bethe–Slater curve-like (BSC-like) or a reversed BSC-like behavior, depending on the in-plane magnetism. The tunability of the intralayer magnetism is a result of competing intralayer Cr–Cr superexchange interactions. A graphene substrate was introduced to examine the validity of our diagrams in practice. This study also afforded a tentative explanation on the previously reported magnetizations in CrSe2 and CrTe2 epitaxial mono- or bilayers under epitaxy strains, which had given rise to some controversy.