Nonvolatile Electric Control of Rashba Spin Splitting in Sb/In2Se3 Heterostructure

Nonvolatile Electric Control of Rashba Spin Splitting in Sb/In2Se3 Heterostructure

Haixia Cheng, Xu Sun, Jun Zhou*, Shijie Wang, Hang Su*, and Wei Ji*

Ferroelectric Rashba semiconductors (FRS) are highly demanded for their potential capability for nonvolatile electric control of electron spins. An ideal FRS is characterized by a combination of room temperature ferroelectricity and a strong Rashba effect, which has, however, been rarely reported. Herein, we designed a room-temperature FRS by vertically stacking a Sb monolayer on a room-temperature ferroelectric In2Se3 monolayer. Our first-principles calculations reveal that the Sb/In2Se3 heterostructure exhibits a clean Rashba splitting band near the Fermi level and a strong Rashba effect coupled to the ferroelectric order. Switching the electric polarization direction enhances the Rashba effect, and the flipping is feasible with a low energy barrier of 22 meV. This Rashba–ferroelectricity coupling effect is robust against changes of the heterostructure interfacial distance and external electric fields. Such a nonvolatile electrically tunable Rashba effect at room temperature enables potential applications in next-generation data storage and logic devices operated under small electrical currents.

Optimal parameter-space for stabilizing the ferroelectric phase of Hf0.5Zr0.5O2 thin-films under strain and electric fields

Optimal parameter-space for stabilizing the ferroelectric phase of Hf0.5Zr0.5O2 thin-films under strain and electric fields

Nanshu Liu, Cong Wang, Changlin Yan, Changsong Xu, Jun Hu, Yanning Zhang, and Wei Ji

Hafnia-based ferroelectric materials, like Hf0.5Zr0.5O2 (HZO), have received tremendous attention owing to their potentials for building ultra-thin ferroelectric devices. The orthorhombic(O)-phase of HZO is ferroelectric but metastable in its bulk form under ambient conditions, which poses a considerable challenge to maintaining the operation performance of HZO-based ferroelectric devices. Here, we theoretically addressed this issue that provides parameter spaces for stabilizing the O-phase of HZO thin-films under various conditions. Three mechanisms were found to be capable of lowering the relative energy of the O-phase, namely, more significant surface-bulk portion of (111) surfaces, compressive caxis strain, and positive electric fields. Considering these mechanisms, we plotted two ternary phase diagrams for HZO thin-films where the strain was applied along the in-plane uniaxial and biaxial, respectively. These diagrams indicate the O-phase could be stabilized by solely shrinking the film-thickness below 12.26 nm, ascribed to its lower surface energies. All these results shed considerable light on designing more robust and higher-performance ferroelectric devices.

Ferroelectricity in untwisted heterobilayers of transition metal dichalcogenides

Ferroelectricity in untwisted heterobilayers of transition metal dichalcogenides

Science 376, 973-978 (2022)

Lukas Rogée, Lvjin Wang, Yi Zhang, Songhua Cai, Peng Wang, Manish Chhowalla, Wei Ji & Shu Ping Lau

Two-dimensional materials with out-of-plane (OOP) ferroelectric and piezoelectric properties are highly desirable for the realization of ultrathin ferro- and piezoelectronic devices. We demonstrate unexpected OOP ferroelectricity and piezoelectricity in untwisted, commensurate, and epitaxial MoS2/WS2 heterobilayers synthesized by scalable one-step chemical vapor deposition. We show d33 piezoelectric constants of 1.95 to 2.09 picometers per volt that are larger than the natural OOP piezoelectric constant of monolayer In2Se3 by a factor of ~6. We demonstrate the modulation of tunneling current by about three orders of magnitude in ferroelectric tunnel junction devices by changing the polarization state of MoS2/WS2 heterobilayers. Our results are consistent with density functional theory, which shows that both symmetry breaking and interlayer sliding give rise to the unexpected properties without the need for invoking twist angles or moiré domains.

A Gd@C82 single-molecule electret

A Gd@C82 single-molecule electret

Nat. Nanotechnol. 15, 1019–1024 (2020)

Kangkang Zhang, Cong Wang, Minhao Zhang, Zhanbin Bai, Fang-Fang Xie, Yuan-Zhi Tan, Yilv Guo, Kuo-Juei Hu, Lu Cao, Shuai Zhang, Xuecou Tu, Danfeng Pan, Lin Kang, Jian Chen, Peiheng Wu, Xuefeng Wang, Jinlan Wang, Junming Liu, You Song, Guanghou Wang, Fengqi Song, Wei Ji, Su-Yuan Xie, Su-Fei Shi, Mark A Reed & Baigeng Wang

Abstract

Electrets are dielectric materials that have a quasi-permanent dipole polarization. A single-molecule electret is a long-sought-after nanoscale component because it can lead to miniaturized non-volatile memory storage devices. The signature of a single-molecule electret is the switching between two electric dipole states by an external electric field. The existence of these electrets has remained controversial because of the poor electric dipole stability in single molecules. Here we report the observation of a gate-controlled switching between two electronic states in Gd@C82. The encapsulated Gd atom forms a charged centre that sets up two single-electron transport channels. A gate voltage of ±11 V (corresponding to a coercive field of ~50 mV Å–1) switches the system between the two transport channels with a ferroelectricity-like hysteresis loop. Using density functional theory, we assign the two states to two different permanent electrical dipole orientations generated from the Gd atom being trapped at two different sites inside the C82 cage. The two dipole states are separated by a transition energy barrier of 11 meV. The conductance switching is then attributed to the electric-field-driven reorientation of the individual dipole, as the coercive field provides the necessary energy to overcome the transition barrier.