Magnetically-controlled non-volatile charging states in bilayer graphene-CrOCl heterostructures

Magnetically-controlled non-volatile charging states in bilayer graphene-CrOCl heterostructures

Shimin Cao#, Runjie Zheng#, Cong Wang#, Ning Ma, Mantang Chen, Yuanjun Song, Ya Feng, Tingting Hao, Yu Zhang, Kenji Watanabe, Takashi Taniguchi, X.C. Xie, Wei Ji*, Yu Ye*, Zheng Han*, Jian-Hao Chen*

Charge carrier densities in electronic heterostructures are typically responsive to external electric fields or chemical doping but rarely to their magnetization history. Here, we demonstrate that magnetization acts as a non-volatile control parameter for the density of states in bilayer graphene (BLG) interfaced with the antiferromagnetic insulator chromium oxychloride (COC). Using capacitance measurements, we observe a hysteretic behavior in the density of states of BLG on a COC substrate in response to an external magnetic field, which is unrelated to the history of electrostatic gating. First-principles calculations revealed that such hysteresis arises from the magnetic-field-controlled charge transfer between BLG and COC during the antiferromagnetic (AFM) to ferrimagnetic-like (FiM) state phase transition of COC. Our work demonstrates that interfacial charging states can be effectively controlled magnetically, and it also shows that capacitance measurement is a suitable technique for detecting subtle changes not detectable via conventional resistivity measurements. These findings broaden the scope of proximity effects and open new possibilities for nanoelectronics applications.

Multi-state data storage in a two-dimensional stripy antiferromagnet implemented by magnetoelectric effect

Multi-state data storage in a two-dimensional stripy antiferromagnet implemented by magnetoelectric effect

Nature Communications 14, 3221 (2023) 

Pingfan Gu, Cong Wang, Dan Su, Zehao Dong, Qiuyuan Wang, Zheng Han, Kenji Watanabe, Takashi Taniguchi, Wei Ji, Young Sun & Yu Ye

A promising approach to the next generation of low-power, functional, and energy-efficient electronics relies on novel materials with coupled magnetic and electric degrees of freedom. In particular, stripy antiferromagnets often exhibit broken crystal and magnetic symmetries, which may bring about the magnetoelectric (ME) effect and enable the manipulation of intriguing properties and functionalities by electrical means. The demand for expanding the boundaries of data storage and processing technologies has led to the development of spintronics toward two-dimensional (2D) platforms. This work reports the ME effect in the 2D stripy antiferromagnetic insulator CrOCl down to a single layer. By measuring the tunneling resistance of CrOCl on the parameter space of temperature, magnetic field, and applied voltage, we verified the ME coupling down to the 2D limit and probed its mechanism. Utilizing the multi-stable states and ME coupling at magnetic phase transitions, we realize multi-state data storage in the tunneling devices. Our work not only advances the fundamental understanding of spin-charge coupling, but also demonstrates the great potential of 2D antiferromagnetic materials to deliver devices and circuits beyond the traditional binary operations.

DOI: 10.1038/s41467-023-39004-4

Magnetic Phase Transitions and Magnetoelastic Coupling in a Two-Dimensional Stripy Antiferromagnet

Magnetic Phase Transitions and Magnetoelastic Coupling in a Two-Dimensional Stripy Antiferromagnet

Nano Letters 22, 1233–1241 (2022)

Pingfan Gu, Yujia Sun, Cong Wang, Yuxuan Peng, Yaozheng Zhu, Xing Cheng, Kai Yuan, Chao Lyu, Xuelu Liu, Qinghai Tan, Qinghua Zhang, Lin Gu, Zhi Wang, Hanwen Wang, Zheng Han, Kenji Watanabe, Takashi Taniguchi, Jinbo Yang, Jun Zhang, Wei Ji, Ping-Heng Tan & Yu Ye

Abstract

Materials with a quasi-one-dimensional stripy magnetic order often exhibit low crystal and magnetic symmetries, thus allowing the presence of various energy coupling terms and giving rise to macroscopic interplay between spin, charge, and phonon. In this work, we performed optical, electrical and magnetic characterizations combined with first-principles calculations on a van der Waals antiferromagnetic insulator chromium oxychloride (CrOCl). We detected the subtle phase transition behaviors of exfoliated CrOCl under varying temperature and magnetic field and clarified its controversial spin structures. We found that the antiferromagnetism and its air stability persist down to few-layer samples, making it a promising candidate for future 2D spintronic devices. Additionally, we verified the magnetoelastic coupling effect in CrOCl, allowing for the potential manipulation of the magnetic states via electric field or strain. These virtues of CrOCl provide us with an ideal platform for fundamental research on spin-charge, spin-phonon coupling, and spin-interactions.