Metal Halides for High-Capacity Energy Storage

Metal Halides for High-Capacity Energy Storage

Small, DOI: 10.1002/smll.202205071

Hui Ma, Xusheng Wang, Cong Wang, Huanrong Zhang, Xinlei Ma, Wenjun Deng, Ruoqi Chen, Tianqi Cao, Yuqiao Chai, Yonglin He, Wei Ji, Rui Li, Jitao Chen, Junhui Ji, Wei Rao, Mianqi Xue

Abstract: High-capacity electrochemical energy storage systems are more urgently needed than ever before with the rapid development of electric vehicles and the smart grid. The most efficient way to increase capacity is to develop electrode materials with low molecular weights. The low-cost metal halides are theoretically ideal cathode materials due to their advantages of high capacity and redox potential. However, their cubic structure and large energy barrier for deionization impede their rechargeability. Here, the reversibility of potassium halides, lithium halides, sodium halides, and zinc halides is achieved through decreasing their dimensionality by the strong π–cation interactions between metal cations and reduced graphene oxide (rGO). Especially, the energy densities of KI-, KBr-, and KCl-based materials are 722.2, 635.0, and 739.4 Wh kg−1, respectively, which are higher than those of other cathode materials for potassium-ion batteries. In addition, the full-cell with 2D KI/rGO as cathode and graphite as anode demonstrates a lifespan of over 150 cycles with a considerable capacity retention of 57.5%. The metal halides-based electrode materials possess promising application prospects and are worthy of more in-depth researches.

DOI: 10.1002/smll.202205071

Continuously tunable ferroelectric domain width down to the single-atomic limit in bismuth tellurite

Continuously tunable ferroelectric domain width down to the single-atomic limit in bismuth tellurite

Nature Communications 13, 5903 (2022)

Mengjiao Han#, Cong Wang#, Kangdi Niu, Qishuo Yang, Chuanshou Wang, Xi Zhang, Junfeng Dai, Yujia Wang, Xiuliang Ma, Junling Wang, Lixing Kang*, Wei Ji* Junhao Lin*

Abstract

Emerging functionalities in two-dimensional materials, such as ferromagnetism,superconductivity and ferroelectricity, open new avenues for promising nanoelectronic applications.Here, we report the discovery of intrinsic in-plane room-temperature ferroelectricity in two-dimensional Bi2TeO5 grown by chemical vapor deposition, where spontaneous polarization originates from Bi column displacements. We found an intercalated buffer layer consist ofmixed Bi/Te column as 180° domain wall which enables facile polarized domain engineering, including continuously tunable domain width by pinning different concentration of buffer layers, and even ferroelectric-antiferroelectric phase transition when the polarization unit is pinned down to single atomic column. More interestingly, the intercalated Bi/Te buffer layer can interconvert to polarized Bi columns which end up with series terraced domain walls and unusual fan-shaped ferroelectric domain. The buffer layer induced size and shape tunable ferroelectric domain in two-dimensional Bi2TeO5 offer insights into the manipulation of functionalities in van der Waals materials for future nanoelectronics.

Chirality locking charge density waves in a chiral crystal

Chirality locking charge density waves in a chiral crystal

Nature Communications 13, 2914 (2022)

Geng Li#, Haitao Yang#, Peijie Jiang#, Cong Wang#, Qiuzhen Cheng, Shangjie Tian, Guangyuan Han, Chengmin Shen, Xiao Lin, Hechang Lei*, Wei Ji*, Ziqiang Wang* & Hong-Jun Gao*

Abstract

In Weyl semimetals, charge density wave (CDW) order can spontaneously break the chiral symmetry, gap out the Weyl nodes, and drive the material into the axion insulating phase. Investigations have however been limited since CDWs are rarely seen in Weyl semimetals. Here, using scanning tunneling microscopy/spectroscopy (STM/S), we report the discovery of a novel unidirectional CDW order on the (001) surface of chiral crystal CoSi – a unique Weyl semimetal with unconventional chiral fermions. The CDW is incommensurate with both lattice momentum and crystalline symmetry directions, and exhibits an intra unit cell π phase shift in the layer stacking direction. The tunneling spectrum shows a particle-hole asymmetric V-shaped energy gap around the Fermi level that modulates spatially with the CDW wave vector. Combined with first-principle calculations, we identify that the CDW is locked to the crystal chirality and is related by a mirror reflection between the two enantiomers of the chiral crystal. Our findings reveal a novel correlated topological quantum state in chiral CoSi crystals and raise the potential for exploring the unprecedented physical behaviors of unconventional chiral fermions.

Layer-dependent interlayer antiferromagnetic spin reorientation in air-stable semiconductor CrSBr

Layer-dependent interlayer antiferromagnetic spin reorientation in air-stable semiconductor CrSBr

ACS Nano 16, 11876–11883 (2022)

Chen Ye, Cong Wang, Qiong Wu, Sheng Liu, Jiayuan Zhou, Guopeng Wang, Aljoscha Söll, Zdenek Sofer, Ming Yue, Xue Liu, Mingliang Tian, Qihua Xiong, Wei Ji & Xiao Renshaw Wang

Abstract

Magnetic van der Waals (vdW) materials possess versatile spin configurations stabilized in reduced dimensions. One magnetic order is the interlayer antiferromagnetism in A-type vdW antiferromagnet, which may be effectively modified by the magnetic field, stacking order, and thickness scaling. However, atomically revealing the interlayer spin orientation in the vdW antiferromagnet is highly challenging, because most of the material candidates exhibit an insulating ground state or instability in ambient conditions. Here, we report the layer-dependent interlayer antiferromagnetic spin reorientation in air-stable semiconductor CrSBr using magnetotransport characterization and first-principles calculations. We reveal an odd–even layer effect of interlayer spin reorientation, which originates from the competitions among interlayer exchange, magnetic anisotropy energy, and extra Zeeman energy of uncompensated magnetization. Furthermore, we quantitatively constructed the layer-dependent magnetic phase diagram with the help of a linear-chain model. Our work uncovers the layer-dependent interlayer antiferromagnetic spin reorientation engineered by magnetic field in the air-stable semiconductor. (DOI: 10.1021/acsnano.2c01151)

Magnetic Phase Transitions and Magnetoelastic Coupling in a Two-Dimensional Stripy Antiferromagnet

Magnetic Phase Transitions and Magnetoelastic Coupling in a Two-Dimensional Stripy Antiferromagnet

Nano Letters 22, 1233–1241 (2022)

Pingfan Gu, Yujia Sun, Cong Wang, Yuxuan Peng, Yaozheng Zhu, Xing Cheng, Kai Yuan, Chao Lyu, Xuelu Liu, Qinghai Tan, Qinghua Zhang, Lin Gu, Zhi Wang, Hanwen Wang, Zheng Han, Kenji Watanabe, Takashi Taniguchi, Jinbo Yang, Jun Zhang, Wei Ji, Ping-Heng Tan & Yu Ye

Abstract

Materials with a quasi-one-dimensional stripy magnetic order often exhibit low crystal and magnetic symmetries, thus allowing the presence of various energy coupling terms and giving rise to macroscopic interplay between spin, charge, and phonon. In this work, we performed optical, electrical and magnetic characterizations combined with first-principles calculations on a van der Waals antiferromagnetic insulator chromium oxychloride (CrOCl). We detected the subtle phase transition behaviors of exfoliated CrOCl under varying temperature and magnetic field and clarified its controversial spin structures. We found that the antiferromagnetism and its air stability persist down to few-layer samples, making it a promising candidate for future 2D spintronic devices. Additionally, we verified the magnetoelastic coupling effect in CrOCl, allowing for the potential manipulation of the magnetic states via electric field or strain. These virtues of CrOCl provide us with an ideal platform for fundamental research on spin-charge, spin-phonon coupling, and spin-interactions.