Magnetically-controlled non-volatile charging states in bilayer graphene-CrOCl heterostructures

Magnetically-controlled non-volatile charging states in bilayer graphene-CrOCl heterostructures

Shimin Cao#, Runjie Zheng#, Cong Wang#, Ning Ma, Mantang Chen, Yuanjun Song, Ya Feng, Tingting Hao, Yu Zhang, Kenji Watanabe, Takashi Taniguchi, X.C. Xie, Wei Ji*, Yu Ye*, Zheng Han*, Jian-Hao Chen*

Charge carrier densities in electronic heterostructures are typically responsive to external electric fields or chemical doping but rarely to their magnetization history. Here, we demonstrate that magnetization acts as a non-volatile control parameter for the density of states in bilayer graphene (BLG) interfaced with the antiferromagnetic insulator chromium oxychloride (COC). Using capacitance measurements, we observe a hysteretic behavior in the density of states of BLG on a COC substrate in response to an external magnetic field, which is unrelated to the history of electrostatic gating. First-principles calculations revealed that such hysteresis arises from the magnetic-field-controlled charge transfer between BLG and COC during the antiferromagnetic (AFM) to ferrimagnetic-like (FiM) state phase transition of COC. Our work demonstrates that interfacial charging states can be effectively controlled magnetically, and it also shows that capacitance measurement is a suitable technique for detecting subtle changes not detectable via conventional resistivity measurements. These findings broaden the scope of proximity effects and open new possibilities for nanoelectronics applications.

“磁性二维材料的近期研究进展”获《物理学报》2024年度最有影响论文

“磁性二维材料的近期研究进展”获《物理学报》2024年度最有影响论文

2024年10月11日,由中国物理学会主办、海南大学承办的物理学会秋季学术会议在海口举行,在第六届中国物理期刊专场报告会上,中国人民大学物理学院季威教授作为通讯作者的论文“磁性二维材料的近期研究进展”(作者:刘南舒,王聪,季威,物理学报,2022,71(12):127504 doi: 10.7498/aps.71.20220301)荣获了《物理学报》杂志颁发的“《物理学报》2024年度最有影响论文奖”。

磁性二维材料是2017年兴起的国际前沿研究领域,其材料种类丰富、物理现象新奇,也是自旋相关电子信息器件小型化的关键材料,各国争相投入大量研究资源。《磁性二维材料的近期研究进展》一文系统综述了该领域的研究进展,从磁长程序的形成机制出发,介绍了磁性二维材料的分类方式和合成手段,讨论了其磁性耦合机制、调控手段和潜在应用等。该文理论—实验并重,结合国际前沿的理论和实验结果,着重讨论了这类材料特有的磁耦合机制和调控手段。该文为初入该领域的我国青年学者提供了鲜有的、由浅入深的系统性中文文献,被多篇博士、硕士论文引用;也为一线研究人员指出了该领域面临的挑战和机遇,作为一篇中文综述已被至少18篇英文论文引用(WoS数据)。

据悉,本次奖项的评定,学会综合考虑文章的创新性,以及在Web of Knowledge 数据库的总被引频次、他引频次、施引期刊的影响力和广泛性等,经编辑部初选,正副主编审定,从《物理学报》2020—2022年发表的2708篇文章中筛选出7篇研究论文,授予“《物理学报》2024年度最有影响论文奖”。

DOI: 10.7498/aps.71.20220301

Room-temperature ferromagnetism in Fe-doped SnSe bulk single crystalline semiconductor

Room-temperature ferromagnetism in Fe-doped SnSe bulk single crystalline semiconductor

Materials Today Physics 38,101251 (2023)
Guangqiang Mei, Wei Tan, Xingxia Cui, Cong Wang, Qing Yuan, Yafei Li, Cancan Lou, Xuefeng Hou, Mengmeng Zhao, Yong Liu, Wei Ji, Xiaona Zhang, Min Feng*, Limin Cao*

The quest for pragmatic room-temperature (RT) magnetic semiconductors (MSs) with a suitable bandgap constitutes one of the contemporary opportunities to be exploited. This may provide a materials platform for to bring new-generation ideal information device technologies into real-world applications where the otherwise conventionally separately utilized charge and spin are simultaneously exploited. Here we present RT ferromagnetism in an Fe-doped SnSe (Fe:SnSe) van der Waals (vdW) single crystalline ferromagnetic semiconductor (FMS) with a semiconducting bandgap of ∼1.19 eV (comparable to those of Si and GaAs). The synthesized Fe:SnSe single crystals feature a dilute Fe content of <1.0 at%, a Curie temperature of ∼310 K, a layered vdW structure nearly identical to that of pristine SnSe, and the absence of in-gap defect states. The Fe:SnSe vdW diluted magnetic semiconductor (DMS) single crystals are grown using a simple temperature-gradient melt-growth process, in which the magnetic Fe atom doping is realized uniquely using FeI2 as the dopant precursor whose melting point is low with respect to crystal growth, and which in principle possesses industrially unlimited scalability. Our work adds a new member in the family of long-searching RT magnetic semiconductors, and may establish a generalized strategy for large-volume production of related DMSs.

Fe-Intercalation Dominated Ferromagnetism of van der Waals Fe3GeTe2

Fe-Intercalation Dominated Ferromagnetism of van der Waals Fe3GeTe2

Advanced Materials 35, 2302568 (2023)

Yueshen Wu, Yuxiong Hu, Cong Wang, Xiang Zhou, Xiaofei Hou, Wei Xia, Yiwen Zhang, Jinghui Wang, Yifan Ding, Jiadian He, Peng Dong, Song Bao, Jinsheng Wen, Yanfeng Guo, Kenji Watanabe, Takashi Taniguchi, Wei Ji, Zhu-Jun Wang, Jun Li

Fe3GeTe2 have proven to be of greatly intrigue. However, the underlying mechanism behind the varying Curie temperature (Tc) values remains a puzzle. Here, we explored the atomic structure of Fe3GeTe2 crystals exhibiting Tc values of 160, 210, and 230 K. The elemental mapping reveals a Fe-intercalation on the interstitial sites within the van der Waals gap of the high- Tc (210 and 230 K) samples, which are observed an exchange bias effect by electrical transport measurements, while Fe intercalation or the bias effect is absent in the low-Tc (160 K) samples. First-principles calculations further suggest that the Fe-intercalation layer may be responsible for the local antiferromagnetic coupling that gives rise to the exchange bias effect, and that the interlayer exchange paths greatly contributes to the enhancement of Tc. This discovery of the Fe-intercalation layer elucidates the mechanism behind the hidden antiferromagnetic ordering that underlies the enhancement of Tc in Fe3GeTe2.

DOI: 10.1002/adma.202302568

Multi-state data storage in a two-dimensional stripy antiferromagnet implemented by magnetoelectric effect

Multi-state data storage in a two-dimensional stripy antiferromagnet implemented by magnetoelectric effect

Nature Communications 14, 3221 (2023) 

Pingfan Gu, Cong Wang, Dan Su, Zehao Dong, Qiuyuan Wang, Zheng Han, Kenji Watanabe, Takashi Taniguchi, Wei Ji, Young Sun & Yu Ye

A promising approach to the next generation of low-power, functional, and energy-efficient electronics relies on novel materials with coupled magnetic and electric degrees of freedom. In particular, stripy antiferromagnets often exhibit broken crystal and magnetic symmetries, which may bring about the magnetoelectric (ME) effect and enable the manipulation of intriguing properties and functionalities by electrical means. The demand for expanding the boundaries of data storage and processing technologies has led to the development of spintronics toward two-dimensional (2D) platforms. This work reports the ME effect in the 2D stripy antiferromagnetic insulator CrOCl down to a single layer. By measuring the tunneling resistance of CrOCl on the parameter space of temperature, magnetic field, and applied voltage, we verified the ME coupling down to the 2D limit and probed its mechanism. Utilizing the multi-stable states and ME coupling at magnetic phase transitions, we realize multi-state data storage in the tunneling devices. Our work not only advances the fundamental understanding of spin-charge coupling, but also demonstrates the great potential of 2D antiferromagnetic materials to deliver devices and circuits beyond the traditional binary operations.

DOI: 10.1038/s41467-023-39004-4