Anisotropic Carrier Mobility from 2H WSe2

Anisotropic Carrier Mobility from 2H WSe2

Advanced Materials 34, 2108615 (2022)

Ping Chen, Jinbo Pan, Wenchao Gao, Bensong Wan, Xianghua Kong, Yang Cheng, Kaihui Liu, Shixuan Du, Wei Ji, Caofeng Pan & Zhong Lin Wang

Abstract

Transition metal dichalcogenides (TMDCs) with 2H phase are expected to be building blocks in next-generation electronics; however, they suffer from electrical anisotropy, which is the basics for multi-terminal artificial synaptic devices, digital inverters, and anisotropic memtransistors, which are highly desired in neuromorphic computing. Herein, the anisotropic carrier mobility from 2H WSe2 is reported, where the anisotropic degree of carrier mobility spans from 0.16 to 0.95 for various WSe2 field-effect transistors under a gate voltage of −60 V. Phonon scattering, impurity ions scattering, and defect scattering are excluded for anisotropic mobility. An intrinsic screening layer is proposed and confirmed by Z-contrast scanning transmission electron microscopy (STEM) imaging to respond to the electrical anisotropy. Seven types of intrinsic screening layers are created and calculated by density functional theory to evaluate the modulated electronic structures, effective masses, and scattering intensities, resulting in anisotropic mobility. The discovery of anisotropic carrier mobility from 2H WSe2 provides a degree of freedom for adjusting the physical properties of 2H TMDCs and fertile ground for exploring and integrating TMDC electronic transistors with better performance along the direction of high mobility.

Giant anisotropic photonics in the 1D van der Waals semiconductor fibrous red phosphorus

Giant anisotropic photonics in the 1D van der Waals semiconductor fibrous red phosphorus

Nature Communications 12: 4822 (2021) 

Luojun Du*,#, Yanchong Zhao#, Linlu Wu#, Xuerong Hu, Lide Yao, Yadong Wang, Xueyin Bai, Yunyun Dai, Jingsi Qiao, Md Gius Uddin, Xiaomei Li, Jouko Lahtinen, Xuedong Bai, Guangyu Zhang, Wei Ji* & Zhipei Sun*

Abstract

A confined electronic system can host a wide variety of fascinating electronic, magnetic, valleytronic and photonic phenomena due to its reduced symmetry and quantum confinement effect. For the recently emerging one-dimensional van der Waals (1D vdW) materials with electrons confined in 1D sub-units, an enormous variety of intriguing physical properties and functionalities can be expected. Here, we demonstrate the coexistence of giant linear/nonlinear optical anisotropy and high emission yield in fibrous red phosphorus (FRP), an exotic 1D vdW semiconductor with quasi-flat bands and a sizeable bandgap in the visible spectral range. The degree of photoluminescence (third-order nonlinear) anisotropy can reach 90% (86%), comparable to the best performance achieved so far. Meanwhile, the photoluminescence (third-harmonic generation) intensity in 1D vdW FRP is strong, with quantum efficiency (third-order susceptibility) four (three) times larger than that in the most well-known 2D vdW materials (e.g., MoS2). The concurrent realization of large linear/nonlinear optical anisotropy and emission intensity in 1D vdW FRP paves the way towards transforming the landscape of technological innovations in photonics and optoelectronics.