Efficient energy transfer in a hybrid organic-inorganic van der Waals heterostructure

Efficient energy transfer in a hybrid organic-inorganic van der Waals heterostructure

Xiaoqing Chen#, Huijuan Zhao#, Ruixiang Fei, Chun Huang, Jingsi Qiao, Cheng Sun, Haiming Zhu, Li Zhan, Zehua Hu, Songlin Li, Li Yang, Zemin Tang, Lianhui Wang, Yi Shi, Wei Ji, Jian-Bin Xu, Li Gao*, Xuetao Gan* & Xinran Wang*

Two-dimensional materials offer strong light-matter interaction and design flexibility beyond conventional bulk semiconductors, but an intrinsic limit is the low absorption imposed by the atomic thickness. A long-sought-after goal is to achieve complementary absorption enhancement through energy transfer (ET) to break this intrinsic limit. However, it is found challenging due to the competing charge transfer process and lack of resonance in exciton states. Here, we report highly efficient energy transfer (ET) in a 2D hybrid organic-inorganic heterostructure (HOIST) of Me-PTCDI/WS2. Resonant ET is observed leading to enhanced WS2 PL by as much as 124 times. We identify Dexter exchange between the Frenkel state in donor and an excited 2s state in acceptor as the main ET mechanism, as supported by density functional theory calculations. We further demonstrate ET-enhanced phototransistor devices with enhanced responsivity by nearly 1000 times without sacrificing the response time. Our results expand the understanding of inter-layer relaxation.

Artificially creating emergent interfacial antiferromagnetism and its manipulation in a magnetic van-der-Waals heterostructure

Artificially creating emergent interfacial antiferromagnetism and its manipulation in a magnetic van-der-Waals heterostructure

Xiangqi Wang†, Cong Wang†, Yupeng Wang†, Chunhui Ye, Azizur Rahman, Min Zhang, Suhan Son, Jun Tan*, Zengming Zhang*, Wei Ji*, Je-Geun Park6,7,8, and Kai-Xuan Zhang†*

Van der Waals (vdW) magnets, with their two-dimensional (2D) atomic structures, provide a unique platform for exploring magnetism at the nanoscale. Although there have been numerous reports on their diverse quantum properties, the emergent interfacial magnetism— artificially created at the interface between two layered magnets—remains largely unexplored. This work presents observations of such emergent interfacial magnetism at the ferromagnet/antiferromagnet interface in a vdW heterostructure. We report the discovery of an intermediate Hall resistance plateau in the anomalous Hall loop, indicative of emergent interfacial antiferromagnetism fostered by the heterointerface. This plateau can be stabilized and further manipulated under varying pressures but collapses under high pressures over 10 GPa. Our theoretical calculations reveal that charge transfer at the interface is pivotal in establishing the interlayer antiferromagnetic spin-exchange interaction. This work illuminates the previously unexplored emergent interfacial magnetism at a vdW interface comprised of a ferromagnetic metal and an antiferromagnetic insulator, and highlights its gradual evolution under increasing pressure. These findings enrich the portfolio of emergent interfacial magnetism and pave the way for future investigations on vdW magnetic interfaces and the development of next-generation spintronic devices.

Filling-dependent intertwined electronic and atomic orders in the flat-band state of 1T TaS2

Filling-dependent intertwined electronic and atomic orders in the flat-band state of 1T TaS2

Yanyan Geng+, Haoyu Dong+, Renhong Wang+, Jianfeng Guo, Shuo Mi, Le Lei, Yan Li, Li Huang, Fei Pang, Rui Xu, Weiqiang Yu, Hong-Jun Gao, Wei Ji*, Weichang Zhou*, and Zhihai Cheng*

The delicate interplay among the complex intra-/inter-layer electron-electron and electron-lattice interactions is the fundamental prerequisite of these exotic quantum states, such as superconductivity, nematic order, and checkerboard charge order. Here we explore the filling-dependent multiple stable intertwined electronic and atomic orders of flat-band state of 1T-TaS2 encompassing hole order, phase orders, coexisting left- and right-chiral orders and mixed phase/chiral orders via scanning tunneling microscopy (STM). Combining first principles calculations, the novel emergent electronic/ atomic orders can be attributed to the weakening of electron-electron correlations and stacking-dependent interlayer interactions. Moreover, achiral intermediate ring-like clusters and nematic charge density wave (CDW) states are successfully realized in intralayer chiral domain wall and interlayer heterochiral stacking regions through chiral overlap configurations. Our study not only deepens the understanding of filling-dependent electronic/atomic orders in flat-band systems, but also offers new perspectives for exploring exotic quantum states in correlated electronic systems.

2D Kagome Materials: Theoretical Insights, Experimental Realizations, and Electronic Structures

2D Kagome Materials: Theoretical Insights, Experimental Realizations, and Electronic Structures

Zhongqin Zhang† , Jiaqi Dai† , Cong Wang , Hua Zhu , Fei Pang , Zhihai Cheng, and Wei Ji*

In recent years, kagome materials have attracted significant attention due to their rich emergent phenomena arising from the quantum interplay of geometry, topology, spin, and correlations. However, in the search for kagome materials, it has been found that bulk compounds with electronic properties related to the kagome lattice are relatively scarce, primarily due to the hybridization of kagome layers with adjacent layers. Therefore, researchers have shown increasing interest in the discovery and construction of two-dimensional (2D) kagome materials, aiming to achieve clean kagome bands near the Fermi level in monolayer or few-layer systems. Substantial advancements have already been made in this area. In this review, we summarize the current progress in the construction and development of 2D kagome materials. We begin by introducing the geometric and electronic structures of the kagome lattice model and its variants, followed by discussions on the experimental realizations and electronic structure characterizations of 2D kagome materials. Finally, we provide an outlook on the future developments of 2D kagome materials.

Altermagnetism in parallel-assembled single-atomic magnetic chains

Altermagnetism in parallel-assembled single-atomic magnetic chains

Deping Guo#, Canbo Zong#, Cong Wang, Weihan Zhang, and Wei Ji*

Altermagnetism has recently attracted significant interest in three- and two-dimensional materials, yet its realization in quasi-one-dimensional (Q1D) materials remains largely unexplored due to stringent symmetry constraints. Here, we systematically investigated the emergence of altermagnetism in 30 Q1D monolayer prototypes, self-assembled from intra-chain anti-ferrimagnetically coupled XYn single-atomic magnetic chains, using symmetry analysis and high-throughput density functional theory calculations. Symmetry analysis identifies four structural prototypes capable of hosting altermagnetism, which expand to 192 monolayers upon materialization. Our calculations further reveal eight dynamically stable Q1D altermagnets, all belonging the AA-stacked intra-chain AFM coupled β-XY₃ prototype, exhibiting d-wave-like spin splitting. Furthermore, we demonstrate the tunability of altermagnetic properties by varying inter-chain spacing and applying external electric fields. By optimizing these parameters, altermagnetism can be significantly enhanced, with spin splitting reaching several hundred meV in CoTe3, or substantially suppressed, leading to a transition to a nodal-line semiconducting state in CrCl3. These findings establish a diverse and highly tunable family of Q1D altermagnetic candidate materials.