Luttinger compensated bipolarized magnetic semiconductor

Luttinger compensated bipolarized magnetic semiconductor

Peng-Jie Guo, Xiao-Yao Hou, Ze-Feng Gao, Huan-Cheng Yang, Wei Ji, Zhong-Yi Lu

Altermagnetic materials, with real-space antiferromagnetic arrangement and reciprocal-space anisotropic spin splitting, have attracted much attention. However, the spin splitting is small in most altermagnetic materials, which is a disadvantage to their application in electronic devices. In this study, based on symmetry analysis and the first-principles electronic structure calculations, we predict for the first time two Luttinger compensated bipolarized magnetic semiconductors Mn(CN)2 and Co(CN)2 with isotropic spin splitting as in the ferromagnetic materials. Our further analysis shows that the Luttinger compensated magnetism here depends not only on spin group symmetry, but also on the crystal field splitting and the number of d-orbital electrons. In addition, the polarized charge density indicates that both Mn(CN)2 and Co(CN)2 have the quasi-symmetry T{\tau} , resulting from the crystal field splitting and the number of d-orbital electrons. The Luttinger compensated magnetism not only has the zero total magnetic moment as the antiferromagnetism, but also has the isotropic spin splitting as the ferromagnetism, thus our work not only provides theoretical guidance for searching Luttinger compensated magnetic materials with distinctive properties, but also provides a material basis for the application in spintronic devices.

Artificially creating emergent interfacial antiferromagnetism and its manipulation in a magnetic van-der-Waals heterostructure

Artificially creating emergent interfacial antiferromagnetism and its manipulation in a magnetic van-der-Waals heterostructure

Xiangqi Wang†, Cong Wang†, Yupeng Wang†, Chunhui Ye, Azizur Rahman, Min Zhang, Suhan Son, Jun Tan*, Zengming Zhang*, Wei Ji*, Je-Geun Park6,7,8, and Kai-Xuan Zhang†*

Van der Waals (vdW) magnets, with their two-dimensional (2D) atomic structures, provide a unique platform for exploring magnetism at the nanoscale. Although there have been numerous reports on their diverse quantum properties, the emergent interfacial magnetism— artificially created at the interface between two layered magnets—remains largely unexplored. This work presents observations of such emergent interfacial magnetism at the ferromagnet/antiferromagnet interface in a vdW heterostructure. We report the discovery of an intermediate Hall resistance plateau in the anomalous Hall loop, indicative of emergent interfacial antiferromagnetism fostered by the heterointerface. This plateau can be stabilized and further manipulated under varying pressures but collapses under high pressures over 10 GPa. Our theoretical calculations reveal that charge transfer at the interface is pivotal in establishing the interlayer antiferromagnetic spin-exchange interaction. This work illuminates the previously unexplored emergent interfacial magnetism at a vdW interface comprised of a ferromagnetic metal and an antiferromagnetic insulator, and highlights its gradual evolution under increasing pressure. These findings enrich the portfolio of emergent interfacial magnetism and pave the way for future investigations on vdW magnetic interfaces and the development of next-generation spintronic devices.

Si-CMOS Compatible Synthesis of Wafer-Scale 1T-CrTe2 with Step-Like Magnetic Transition

Si-CMOS Compatible Synthesis of Wafer-Scale 1T-CrTe2 with Step-Like Magnetic Transition

Jiwei Liu#, Cong Wang#, Yuwei Wang, Jianbin Xu, Wei Ji*, Mingsheng Xu*, Deren Yang*

Two-dimensional room-temperature ferromagnet CrTe2 is a promising candidate material for spintronic applications. However, its large-scale and cost-effective synthesis remains a challenge. Here, we report the fine controllable synthesis of wafer-scale 1T-CrTe2 films on a SiO2/Si substrate using plasma-enhanced chemical vapor deposition at temperatures below 400 ºC. Magnetic hysteresis measurements reveal that the synthesized 1T-CrTe2 films exhibit perpendicular magnetic anisotropy along with distinct step-like magnetic transitions. We find that 1T-CrTe2 is susceptible to oxygen adsorption even in ambient conditions. Our theoretical calculations indicate that the oxidation of surface layers is crucial for the absence of out-of-plane easy axis in few-layer CrTe2, while the interlayer antiferromagnetic coupling among the upper surface layers leads to the observed step-like magnetic transitions. Our study provides a Si-CMOS compatible approach for the fabrication of magnetic two-dimensional materials and highlights how unintentional adsorbents or dopants can significantly influence the magnetic behaviors of these materials.

Interlayer coupling driven rotation of the magnetic easy axis in MnS⁢e2 monolayers and bilayers

Interlayer coupling driven rotation of the magnetic easy axis in MnS⁢e2 monolayers and bilayers

Zhongqin Zhang, Cong Wang†,*, PengJie Guo, Linwei Zhou, Yuhao Pan, Zhixin Hu*, and Wei Ji*

Interlayer coupling plays a critical role in tuning the electronic structures and magnetic ground states of two-dimensional materials, influenced by the number of layers, interlayer distance, and stacking order. However, its effect on the orientation of the magnetic easy axis remains underexplored. In this study, we demonstrate that interlayer coupling can significantly alter the magnetic easy-axis orientation, as shown by the magnetic easy-axis of monolayer 1T-MnSe2 tilting 33° from the z-axis, while aligning with the z-axis in the bilayer. This change results from variations in orbital occupations near the Fermi level, particularly involving nonmetallic Se atoms. Contrary to the traditional focus on magnetic metal atoms, our findings reveal that Se orbitals play a key role in influencing the easy-axis orientation and topological Chern numbers. Furthermore, we show that the occupation of Se p-orbitals, and consequently the magnetic anisotropy, can be modulated by factors such as stacking order, charge doping, and external strain. Our results highlight the pivotal role of interlayer coupling in tuning the magnetic properties of layered materials, with important implications for spintronic applications.

Regulated magnetic anisotropy and charge density wave in uniformly fabricated Janus CrTeSe monolayer

Regulated magnetic anisotropy and charge density wave in uniformly fabricated Janus CrTeSe monolayer

Jin-Hua Nie#, Cong Wang#, Mao-Peng Miao#, Kang-Di Niu#, Tao Xie, Ting-Fei Guo, Wen-Hao Zhang, Chao-Fei Liu, Rui-Jing Sun, Jian-Wang Zhou, Jun-Hao Lin, Wei Ji* & Ying-Shuang Fu*

Two-dimensional Janus materials exhibit unique physical properties due to broken inversional symmetries. However, it remains elusive to synthesize Janus monolayer crystals with tailored long-range magnetic orders. Here, we show a 2 ×√𝟑 charge density wave (CDW) transition and regulations of magnetization in a uniform Janus CrTeSe monolayer, selectively selenized from a pristine CrTe2 monolayer using molecular beam epitaxy. Scanning transmission electron microscopy images indicate the high quality and uniformity of the Janus structure. Spin-polarized scanning tunneling microscopy/spectroscopy measurements and density functional theory calculations unveil a robust zigzag antiferromagnetic order and the CDW transition in the CrTeSe monolayer. The one-side selenization breaks the vertical inversion symmetry, rotating the magnetic moment directions to the in-plane direction. The CDW transition opens a gap at the Fermi level and reorients the magnetic moments in tilted directions. Our work demonstrates the construction of large-area Janus structures and the tailoring of electronic and magnetic properties of two-dimensional Janus layers.