Stacking selected polarization switching and phase transition in vdW ferroelectric α-In2Se3 junction devices

Stacking selected polarization switching and phase transition in vdW ferroelectric α-In2Se3 junction devices

Yuyang Wu#, Tianjiao Zhang#, Deping Guo#, Bicheng Li, Ke Pei, Wenbin You, Yiqian Du, Wanchen Xing, Yuxiang Lai, Wei Ji*, Yuda Zhao* & Renchao Che*

The structure and dynamics of ferroelectric domain walls are essential for polarization switching in ferroelectrics, which remains relatively unexplored in two-dimensional ferroelectric α-In2Se3. Interlayer interactions engineering via selecting the stacking order in two-dimensional materials allows modulation of ferroelectric properties. Here, we report stacking-dependent ferroelectric domain walls in 2H and 3R stacked α-In2Se3, elucidating the resistance switching mechanism in ferroelectric semiconductor-metal junction devices. In 3R α-In2Se3, the in-plane movement of out-of-plane ferroelectric domain walls yield a large hysteresis window. Conversely, 2H α-In2Se3 devices favor in-plane domain walls and out-of-plane domain wall motion, producing a small hysteresis window. High electric fields induce a ferro-paraelectric phase transition of In2Se3, where 3R In2Se3 reaches the transition through intralayer atomic gliding, while 2H In2Se3 undergoes a complex process comprising intralayer bond dissociation and interlayer bond reconstruction. Our findings demonstrate tunable ferroelectric properties via stacking configurations, offering an expanded dimension for material engineering in ferroelectric devices.

Orbital-Ordering Driven Simultaneous Tunability of Magnetism and Electric Polarization in Strained Monolayer VCl3

Orbital-Ordering Driven Simultaneous Tunability of Magnetism and Electric Polarization in Strained Monolayer VCl3

Chinese Physics Letters 41, 047501 (2024).

Deping Guo (郭的坪)#, Cong Wang (王聪)#, Lvjin Wang (王侣锦), Yunhao Lu (陆赟豪), Hua Wu (吴骅), Yanning Zhang (张妍宁), and Wei Ji (季威)*

Abstract:

Two-dimensional (2D) van der Waals magnetic materials have promising and versatile electronic and magnetic properties in the 2D limit, indicating a considerable potential to advance spintronic applications. Theoretical predictions thus far have not ascertained whether monolayer VCl3 is a ferromagnetic (FM) or anti-FM monolayer; this also remains to be experimentally verified. We theoretically investigate the influence of potential factors, including 𝐶3 symmetry breaking, orbital ordering, epitaxial strain, and charge doping, on the magnetic ground state. Utilizing first-principles calculations, we predict a collinear type-III FM ground state in monolayer VCl3 with a broken 𝐶3 symmetry, wherein only the former two of three 𝑡2g orbitals (𝑎1g, 𝑒 𝜋 g2 and 𝑒 𝜋 g1) are occupied. The atomic layer thickness and bond angles of monolayer VCl3 undergo abrupt changes driven by an orbital ordering switch, resulting in concomitant structural and magnetic phase transitions. Introducing doping to the underlying Cl atoms of monolayer VCl3 without 𝐶3 symmetry simultaneously induces in- and out-of-plane polarizations. This can achieve a multiferroic phase transition if combined with the discovered adjustments of magnetic ground state and polarization magnitude under strain. The establishment of an orbital-ordering driven regulatory mechanism can facilitate deeper exploration and comprehension of magnetic properties of strongly correlated systems in monolayer VCl3.

DOI: 10.1088/0256-307X/41/4/047501

Achieving a Large Energy Gap in Bi(110) Atomically Thin Films

Achieving a Large Energy Gap in Bi(110) Atomically Thin Films

Small Structures 4, 2300207 (2023).

Qing Yuan#, Yafei Li#, Deping Guo, Cancan Lou, Xingxia Cui, Guangqiang Mei, Chengxiang Jiao, Kai Huang, Xuefeng Hou, Wei Ji*, Limin Cao*, Min Feng*

Abstract:

Metal–insulator transition has long been one of the key subjects in condensed matter systems. Herein, the emergence of a large energy gap (Eg, 0.8–1.0 eV) in Bi(110) two-atomic-layer nanoribbons grown on a SnSe(001) substrate is reported, which normally has an intrinsic semimetal-like characteristic. The existence of this abnormally large Eg in Bi(110) is, however, determined by Bi coverage. When coverage is above ≈64 ± 2%, Eg vanishes, and instead, a Bi(110) semimetal-like phase appears through a singular insulator–metal transition. Measurements using qPlus atomic force microscopy demonstrate that either insulating or semimetal-like Bi(110) possesses a distorted black phosphorous structure with noticeable atomic buckling. Density function theory fully reproduces the semimetal-like Bi(110) on SnSe(001). However, none of the insulating phases with this large Eg could be traced. Although the underlying mechanism of the large Eg and the insulator-metal transition requires further exploration, experiments demonstrate that similar results can be achieved for Bi grown on SnS, the structural analog of SnSe, exhibiting an even larger Eg of ≈2.3 eV. The experimental strategy may be generalized to utilization of group-IV monochalcogenides to create Bi(110) nanostructures with properties unachievable on other surfaces, providing an intriguing platform for exploring the interesting quantum electronic phases.

DOI: 10.1002/sstr.202300207

Robust Weak Antilocalization Effect Up to ∼120 K in the van der Waals Crystal Fe5–xGeTe2 with Near-Room-Temperature Ferromagnetism

J. Phys. Chem. Lett. 14, 5456–5465 (2023)

Zhengxian Li, Deping Guo, Kui Huang, Guodong Ma, Xiaolei Liu, Yueshen Wu, Jian Yuan, Zicheng Tao, Binbin Wang, Xia Wang, Zhiqiang Zou, Na Yu, Geliang Yu, Jiamin Xue, Zhongkai Liu, Wei Ji, Jun Li, and Yanfeng Guo

The van der Waals Fe5–xGeTe2 is a 3d ferromagnetic metal with a high Curie temperature of 275 K. We report herein the observation of an exceptional weak antilocalization (WAL) effect that can persist up to 120 K in an Fe5–xGeTe2 nanoflake, indicating the dual nature with both itinerant and localized magnetism of 3d electrons. The WAL behavior is characterized by the magnetoconductance peak around zero magnetic field and is supported by the calculated localized nondispersive flat band around the Fermi level. The peak to dip crossover starting around 60 K in magnetoconductance is visible, which could be ascribed to temperature-induced changes in Fe magnetic moments and the coupled electronic band structure as revealed by angle-resolved photoemission spectroscopy and first-principles calculations. Our findings would be instructive for understanding the magnetic exchanges in transition metal magnets as well as for the design of next-generation room-temperature spintronic devices.

六名成员参加“第四届团簇科学与原子制造学术研讨会”

六名成员参加“第四届团簇科学与原子制造学术研讨会”

2023年4月21-23日,中国人民大学物理学院季威教授携刘南舒博士后以及郭的坪、伍琳璐、官雨柔、戴佳琦等四名博士生赴西安参加了第四届“团簇科学与原子制造学术研讨会”。季威教授受会议主办方邀请作了题为“低维超原子晶体中的特殊电子态”的报告。

季威教授在作报告

刘南舒、郭的坪、伍琳璐、官雨柔、戴佳琦等成员分别在会议中展示了题为 “Magnetic coupling in superatom Mn@Sn12 assembly” (Liu), “Controllable dimensionality conversion between 1D and 2D CrCl3 magnetic nanostructures” (Guo), “Interweaving Polar Charge Orders in a Layered Metallic Superatomic Crystal” (Wu), “Magnetization-distance oscillation induced by competing interactions in Cr doped Au6Te12Se8 superatomic assembly” (Guan) 和“One-Step Exfoliation Method for Plasmonic Activation of Large-Area 2D Crystals” (Dai) 的墙报,均获得会议主办方颁发的优秀墙报奖状。

(左图)不愿透露样貌的郭师姐和她的墙报;(右图)伍琳璐和戴佳琦在她们的墙报前合影

第四届“团簇科学与原子制造学术研讨会”由西安交通大学物理学院物质非平衡合成与调控教育部重点实验室、南京大学物理学院和大连理工大学三束材料改性教育部重点实验室联合主办;西安交通大学激光与粒子束科学技术研究所承办。会议主题是交流近年来原子与分子及团簇物理、原子制造和纳米科技方面的研究进展,探讨本领域的未来发展方向。季威研究组成员为参与本次会议做了充分准备,并期待下次参会的科研成果能有在团簇及原子制造领域有新的突破。