In conventional electrides, excess electrons are localized in crystal voids to serve as anions. Most of these electrides are metallic and the metal cations are primarily from the s-block, d-block, or rare-earth elements. Here, we report a class of p-block metal-based electrides found in bilayer SnO and PbO, which are semiconducting and feature electride states in both the valence band (VB) and conduction band (CB), as referred to 2D “bipolar” electrides. These bilayers are hybrid electrides where excess electrons are localized in the interlayer region and hybridize with the orbitals of Sn atoms in the VB, exhibiting strong covalent-like interactions with neighboring metal atoms. Compared to previously studied hybrid electrides, the higher electronegativity of Sn and Pb enhances these covalent-like interactions, leading to largely enhanced semiconducting bandgap of up to 2.5 eV. Moreover, the CBM primarily arises from the overlap between metal states and interstitial charges, denoting a potential electride and forming a free-electron-like (FEL) state with small effective mass. This state offers high carrier mobilities for both electron and hole in bilayer SnO, suggesting its potential as a promising p-type semiconductor material.
Kagome lattices facilitate various quantum phases, yet in bulk materials, their kagome flat-bands often interact with bulk bands, suppressing kagome electronic characteristics for hosting these phases. Here, we use density-functional-theory calculations to predict the geometric and electronic structures, as well as the topological and magnetic properties, of a series of MoTe2-x kagome monolayers formed by mirror-twin-boundary (MTB) loops. We analyze nine MTB-loop configurations of varying sizes and arrangements to assess their impact on various properties. Within the intrinsic bandgap of MoTe2, we identify two sets of kagome bands, originating from in-plane and out-of-plane Te p-orbitals at MTB-loop edges and -vertices, respectively. Three configurations exhibit superior stability, while three others show comparable stability. Among these, four display bandgaps and potentially non-zero Z2 topological invariants, suggesting possible topological phases, while the remaining two are metallic and feature Stoner magnetization. These findings guide the design of kagome-based two-dimensional materials with tunable electronic, topological, and magnetic properties.
Zemin Pan, Wenqi Xiong, Jiaqi Dai, Yunhua Wang, Tao Jian, Xingxia Cui, Jinghao Deng, Xiaoyu Lin, Zhengbo Cheng, Yusong Bai, Chao Zhu, Da Huo, Geng Li, Min Feng, Jun He, Wei Ji, Shengjun Yuan, Fengcheng Wu, Chendong Zhang, and Hong-Jun Gao
Abstract:
Flat electronic bands near the Fermi level provide a fertile playground for realizing interaction-driven correlated physics. To date, related experiments have mostly been limited to engineered multilayer systems (e.g., moiré systems). Herein, we report an experimental realization of nearly flat bands across the Fermi level in monolayer MoTe2-x by fabricating a uniformly ordered mirror twin boundary superlattice (corresponding to a stoichiometry of MoTe56/33). The kagome flat bands are discovered by combining scanning tunnelling microscopy and theoretical calculations. The partial filling nature of flat bands yields a correlated insulating state exhibiting a hard gap as large as 15 meV. Moreover, we observe pronounced responses of the correlated states to magnetic fields, providing evidence for a spin-polarized ground state. Our work introduces a monolayer platform that manifests strong correlation effects arising from flattened electronic bands.
Abstract: Polymorphic structures of transition metal dichalcogenides (TMDs) host exotic electronic states, like charge density wave and superconductivity. However, the number of these structures is limited by crystal symmetries, which poses a challenge to achieving tailored lattices and properties both theoretically and experimentally. Here, we report a coloring triangle (CT) latticed MoTe2 monolayer, termed CT-MoTe2, constructed by controllably introducing uniform and ordered mirror-twin-boundaries into a pristine monolayer in molecular beam epitaxy. Low-temperature scanning tunneling microscopy and spectroscopy (STM/STS) together with theoretical calculations reveal that the monolayer has an electronic Janus lattice, i.e., an energy-dependent atomic-lattice and a Te pseudo-sublattice, and shares the identical geometry with the Mo5Te8 layer. Dirac-like and flat electronic bands inherently existing in the CT lattice are identified by two broad and two prominent peaks in STS spectra, respectively, and verified with density-functional-theory calculations. Two types of intrinsic domain boundaries were observed, one of which the electronic-Janus-lattice feature maintains, implying potential applications as an energy-tunable electron-tunneling barrier in future functional devices.
Correlated 2D layers, like 1T-phases of TaS2, TaSe2, and NbSe2, exhibit rich tunability through varying interlayer couplings, which promotes the understanding of electron correlation in the 2D limit. However, the coupling mechanism is, so far, poorly understood and is tentatively ascribed to interactions among the dz2 orbitals of Ta or Nb atoms. Here, it is theoretically shown that the interlayer hybridization and localization strength of interfacial Se pz orbitals, rather than Nb dz2 orbitals, govern the variation of electron-correlated properties upon interlayer sliding or twisting in correlated magnetic 1T-NbSe2 bilayers. Each of the layers is in a star-of-David (SOD) charge-density-wave phase. Geometric and electronic structures and magnetic properties of 28 different stacking configurations are examined and analyzed using density-functional-theory calculations. It is found that the SOD contains a localized region, in which interlayer Se pz hybridization plays a paramount role in varying the energy levels of the two Hubbard bands. These variations lead to three electronic transitions among four insulating states, which demonstrate the effectiveness of interlayer interactions to modulate correlated magnetic properties in a prototypical correlated magnetic insulator.