Charge-transfer dipole low-frequency vibronic excitation at single-molecular scale

Charge-transfer dipole low-frequency vibronic excitation at single-molecular scale

Cancan Lou†, Yurou Guan†, Xingxia Cui†, Yafei Li , Xieyu Zhou, Qing Yuan, Guangqiang Mei, Chengxiang Jiao, Kai Huang, Xuefeng Hou, Limin Cao, Wei Ji*, Dino Novko, Hrvoje Petek*, Min Feng*

Scanning tunneling microscopy (STM) vibronic spectroscopy, which has provided submolecular insights into electron-vibration (vibronic) coupling, faces challenges when probing the pivotal low-frequency vibronic excitations. Because of eigenstate broadening on solid substrates, resolving low-frequency vibronic states demands strong decoupling. This work designs a type II band alignment in STM junction to achieve effective charge-transfer state decoupling. This strategy enables the successful identification of the lowest-frequency Hg(ω1) (Raman-active Hg mode) vibronic excitation within single C60 molecules, which, despite being notably pronounced in electron transport of C60 single-molecule transistors, has remained hidden at submolecular level. Our results show that the observed Hg(ω1) excitation is “anchored” to all molecules, irrespective of local geometry, challenging common understanding of structural definition of vibronic excitation governed by Franck-Condon principle. Density functional theory calculations reveal existence of molecule-substrate interfacial charge-transfer dipole, which, although overlooked previously, drives the dominant Hg(ω1) excitation. This charge-transfer dipole is not specific but must be general at interfaces, influencing vibronic coupling in charge transport.

Distance-dependent magnetization modulation induced by inter-superatomic interactions in Cr-doped Au6Te12Se8 dimers

Distance-dependent magnetization modulation induced by inter-superatomic interactions in Cr-doped Au6Te12Se8 dimers

Chin. Phys. B 33, 127502 (2024)

Yurou Guan (官雨柔), Nanshu Liu(刘南舒), Cong Wang(王聪), Fei Pang(庞斐), Zhihai Cheng(程志海), and Wei Ji(季威)*

Individual superatoms were assembled into more complicated nanostructures for diversify their physical properties. Magnetism of assembled superatoms remains, however, ambiguous, particularly in terms of its distance dependence. Here, we report density functional theory calculations on the distance-dependent magnetism of transition metal embedded Au6Te8Se12 (ATS) superatomic dimers. Among the four considered transition metals, which include V, Cr, Mn and Fe, the Cr-embedded Au6Te12Se8 (Cr@ATS) is identified as the most suitable for exploring the inter-superatomic distance-dependent magnetism. We thus focused on Cr@ATS superatomic dimers and found an inter-superatomic magnetization-distance oscillation where three transitions occur for magnetic ordering and/or anisotropy at different inter-superatomic distances. As the inter-superatomic distance elongates, a ferromagnetism (FM)-to-antiferromagnetic (AFM) transition and a sequential AFM-to-FM transition occur, ascribed to competitions among Pauli repulsion and kinetic-energy-gains in formed inter-superatomic Cr-Au-Au-Cr covalent bonds and Te-Te quasi-covalent bonds. For the third transition, in-plane electronic hybridization contributes to the stabilization of the AFM configuration. This work unveils two mechanisms for tuning magnetism through non-covalent interactions and provides a strategy for manipulating magnetism in superatomic assemblies.

Modulation of supramolecular structure by stepwise removal of tert-butyl groups from tetraazaperopyrene derivatives on Ag(111)

Modulation of supramolecular structure by stepwise removal of tert-butyl groups from tetraazaperopyrene derivatives on Ag(111)

J. Chem. Phys. 160, 134308 (2024),

Boyu Fu#; Yurou Guan#; Wei Yuan#; Jianqun Geng#; Zhenliang Hao#; Zilin Ruan; Shijie Sun ; Yong Zhang; Wei Xiong; Lei Gao*; Yulan Chen*; Wei Ji*; Jianchen Lu*; Jinming Cai*

Abstract:

Tert-butyl functional groups can modulate the self-assembly behavior of organic molecules on surfaces. However, the precise construction of supramolecular architectures through their controlled thermal removal remains a challenge. Herein, we precisely controlled the removal amount of tert-butyl groups in tetraazaperopyrene derivatives by stepwise annealing on Ag(111). The evolution of 4tBu-TAPP supramolecular self-assembly from the grid-like structure composed of 3tBu-TAPP through the honeycomb network formed by 2tBu-TAPP to the one-dimensional chain co-assembled by tBu-TAPP and TAPP was successfully realized. This series of supramolecular nanostructures were directly visualized by high resolution scanning tunneling microscopy. Tip manipulation and density functional theory calculations show that the formation of honeycomb network structure can be attributed to the van der Waals interactions, N–Ag–N coordination bonds, and weak C–H⋯N hydrogen bonds. Further addition of two tert-butyl groups (6tBu-TAPP) leads to a completely different assembly evolution, due to the fact that the additional tert-butyl groups affect the molecular adsorption behavior and ultimately induce desorption. This work can possibly be exploited in constructing stable and long-range ordered nanostructures in surface-assisted systems, which can also promote the development of nanostructures in functional molecular devices.

DOI: 10.1063/5.0196443

六名成员参加“第四届团簇科学与原子制造学术研讨会”

六名成员参加“第四届团簇科学与原子制造学术研讨会”

2023年4月21-23日,中国人民大学物理学院季威教授携刘南舒博士后以及郭的坪、伍琳璐、官雨柔、戴佳琦等四名博士生赴西安参加了第四届“团簇科学与原子制造学术研讨会”。季威教授受会议主办方邀请作了题为“低维超原子晶体中的特殊电子态”的报告。

季威教授在作报告

刘南舒、郭的坪、伍琳璐、官雨柔、戴佳琦等成员分别在会议中展示了题为 “Magnetic coupling in superatom Mn@Sn12 assembly” (Liu), “Controllable dimensionality conversion between 1D and 2D CrCl3 magnetic nanostructures” (Guo), “Interweaving Polar Charge Orders in a Layered Metallic Superatomic Crystal” (Wu), “Magnetization-distance oscillation induced by competing interactions in Cr doped Au6Te12Se8 superatomic assembly” (Guan) 和“One-Step Exfoliation Method for Plasmonic Activation of Large-Area 2D Crystals” (Dai) 的墙报,均获得会议主办方颁发的优秀墙报奖状。

(左图)不愿透露样貌的郭师姐和她的墙报;(右图)伍琳璐和戴佳琦在她们的墙报前合影

第四届“团簇科学与原子制造学术研讨会”由西安交通大学物理学院物质非平衡合成与调控教育部重点实验室、南京大学物理学院和大连理工大学三束材料改性教育部重点实验室联合主办;西安交通大学激光与粒子束科学技术研究所承办。会议主题是交流近年来原子与分子及团簇物理、原子制造和纳米科技方面的研究进展,探讨本领域的未来发展方向。季威研究组成员为参与本次会议做了充分准备,并期待下次参会的科研成果能有在团簇及原子制造领域有新的突破。