Magnetic and Multiferroic Properties of Two-Dimensional FePX3 and CuFeP2X6 (X = S, Se, and Te)

Magnetic and Multiferroic Properties of Two-Dimensional FePX3 and CuFeP2X6 (X = S, Se, and Te)

Qingyang Wang, Mengmeng Niu, Weikang Zhou, Yicheng Ma, Chun Huang, Gege Yang, Yan Shao, Xu Wu, Cong Wang, Wei Ji*, Yeliang Wang*, Jingsi Qiao*

Two-dimensional (2D) multiferroic materials have significant application potential for novel storage devices due to their tunable magnetic and ferroelectric properties. Transition metal phosphorus chalcogenides MPX3 (X = S, Se, and Te) were found to be magnetic and multiferroic with excellent tunability, promising for multifunctionalized applications. In this study, we investigated the antiferromagnetic and antiferroelectric properties of two-dimensional FePX3 and CuFeP2X6 by density functional theory. Monolayer FePS3/FePSe3 and FePTe3 take intralayer zigzag and Neel antiferromagnetic ground states, respectively. This tunability of intralayer magnetism results from the competition between the spin-exchange interactions of the first and second nearest Fe atoms. Bilayer FePX3 shows weak interlayer interactions and keeps electronic and magnetic characteristics similar to those of the monolayer. Moreover, by introducing the nonmagnetic Cu atom into FePX3, the inversion symmetry broken induces CuFeP2X6 to be multiferroic materials. The transition barrier between ferroelectric (FE) and antiferroelectric (AFE) phases in CuFeP2S6 and CuFeP2Se6 is 0.09 and 0.04 eV/f.u., similar to well-known multiferroic CuCrP2S6. FE-to-AFE phase transition is expected to be achieved by applying an electric field and uniaxial strain. CuFeP2Te6 shows the ground state with a distorted paraelectric phase. Our results show the fundamental properties and in-depth understanding of 2D FePX3 and CuFeP2X6, guiding further investigation of 2D multifunctionalized magnetoelectric devices.

Layered semiconducting electrides in p-block metal oxides

Layered semiconducting electrides in p-block metal oxides

Jiaqi Dai#, Feng Yang, Cong Wang, Fei Pang, Zhihai Cheng, and Wei Ji*

In conventional electrides, excess electrons are localized in crystal voids to serve as anions. Most of these electrides are metallic and the metal cations are primarily from the s-block, d-block, or rare-earth elements. Here, we report a class of p-block metal-based electrides found in bilayer SnO and PbO, which are semiconducting and feature electride states in both the valence band (VB) and conduction band (CB), as referred to 2D “bipolar” electrides. These bilayers are hybrid electrides where excess electrons are localized in the interlayer region and hybridize with the orbitals of Sn atoms in the VB, exhibiting strong covalent-like interactions with neighboring metal atoms. Compared to previously studied hybrid electrides, the higher electronegativity of Sn and Pb enhances these covalent-like interactions, leading to largely enhanced semiconducting bandgap of up to 2.5 eV. Moreover, the CBM primarily arises from the overlap between metal states and interstitial charges, denoting a potential electride and forming a free-electron-like (FEL) state with small effective mass. This state offers high carrier mobilities for both electron and hole in bilayer SnO, suggesting its potential as a promising p-type semiconductor material.

Buffer layer stabilized single-unit cell ferroelectric Bi2TeO5

Buffer layer stabilized single-unit cell ferroelectric Bi2TeO5

Yunfei Li#, Alei Li#, Cong Wang#, Mengjiao Han*, Juntong Zhu, Yunlei Zhong, Pin Zhao, Ge Song, Shun Wang, Zongjie Shen, Lin Wang, Hui Zhang, Wu Zhou, Lu You, Wei Ji*, Junhao Lin*, Lixing Kang*

Miniaturizing van der Waals (vdW) ferroelectric materials to atomic scales is essential for modern devices like nonvolatile memory and sensors. To unlock their full potential, their growth mechanisms, interface effects, and stabilization are preferably investigated, particularly for ultrathin 2D nanosheets with single-unit cell thickness. This study focuses on Bi2TeO5 (BTO) and utilizes precise control over growth kinetics at the nucleation temperature to create specific interfacial reconfiguration layers. Ultrathin BTO nanosheets with planar ferroelectricity at a single-unit cell thickness are successfully grown. Atomic-scale characterization reveals a disordered distribution of elements in the interfacial layer, which buffers strain from lattice mismatch. The theoretical calculations support these observations. Furthermore, this strategy also can be extended to the growth of a variety of 2D ternary oxide nanosheets. This work contributes to a better understanding of growth and stability mechanisms in 2D ultrathin nanosheets.

Stacking selected polarization switching and phase transition in vdW ferroelectric α-In2Se3 junction devices

Stacking selected polarization switching and phase transition in vdW ferroelectric α-In2Se3 junction devices

Yuyang Wu#, Tianjiao Zhang#, Deping Guo#, Bicheng Li, Ke Pei, Wenbin You, Yiqian Du, Wanchen Xing, Yuxiang Lai, Wei Ji*, Yuda Zhao* & Renchao Che*

The structure and dynamics of ferroelectric domain walls are essential for polarization switching in ferroelectrics, which remains relatively unexplored in two-dimensional ferroelectric α-In2Se3. Interlayer interactions engineering via selecting the stacking order in two-dimensional materials allows modulation of ferroelectric properties. Here, we report stacking-dependent ferroelectric domain walls in 2H and 3R stacked α-In2Se3, elucidating the resistance switching mechanism in ferroelectric semiconductor-metal junction devices. In 3R α-In2Se3, the in-plane movement of out-of-plane ferroelectric domain walls yield a large hysteresis window. Conversely, 2H α-In2Se3 devices favor in-plane domain walls and out-of-plane domain wall motion, producing a small hysteresis window. High electric fields induce a ferro-paraelectric phase transition of In2Se3, where 3R In2Se3 reaches the transition through intralayer atomic gliding, while 2H In2Se3 undergoes a complex process comprising intralayer bond dissociation and interlayer bond reconstruction. Our findings demonstrate tunable ferroelectric properties via stacking configurations, offering an expanded dimension for material engineering in ferroelectric devices.

Magnetically-controlled non-volatile charging states in bilayer graphene-CrOCl heterostructures

Magnetically-controlled non-volatile charging states in bilayer graphene-CrOCl heterostructures

Shimin Cao#, Runjie Zheng#, Cong Wang#, Ning Ma, Mantang Chen, Yuanjun Song, Ya Feng, Tingting Hao, Yu Zhang, Kenji Watanabe, Takashi Taniguchi, X.C. Xie, Wei Ji*, Yu Ye*, Zheng Han*, Jian-Hao Chen*

Charge carrier densities in electronic heterostructures are typically responsive to external electric fields or chemical doping but rarely to their magnetization history. Here, we demonstrate that magnetization acts as a non-volatile control parameter for the density of states in bilayer graphene (BLG) interfaced with the antiferromagnetic insulator chromium oxychloride (COC). Using capacitance measurements, we observe a hysteretic behavior in the density of states of BLG on a COC substrate in response to an external magnetic field, which is unrelated to the history of electrostatic gating. First-principles calculations revealed that such hysteresis arises from the magnetic-field-controlled charge transfer between BLG and COC during the antiferromagnetic (AFM) to ferrimagnetic-like (FiM) state phase transition of COC. Our work demonstrates that interfacial charging states can be effectively controlled magnetically, and it also shows that capacitance measurement is a suitable technique for detecting subtle changes not detectable via conventional resistivity measurements. These findings broaden the scope of proximity effects and open new possibilities for nanoelectronics applications.