Phys. Rev. B xx, Lxxxxxx (2025); arXiv:2502.05785(2025)
Deping Guo#, Canbo Zong#, Weihan Zhang, Cong Wang*, Junwei Liu*, and Wei Ji*
Abstract:
Altermagnetism has recently drawn considerable attention in three- and two dimensional materials. Here, we extend this concept to quasi-one-dimensional (Q1D) monolayers assembled from single-atomic magnetic chains. Through systematically examining nine types of structures, two stacking orders, and intra /inter-chain magnetic couplings, we identify four out of thirty promising structural prototypes for hosting altermagnetism, which yields 192 potential monolayer materials. We further confirm eight thermodynamically stable Q1D monolayers via high-throughput calculations. Using symmetry analysis and first-principles calculations, we find that the existence of altermagnetism is determined by the type of inter-chain magnetic coupling and predict three intrinsic altermagnets, CrBr3, VBr3, and MnBr3, due to their ferromagnetic inter-chain couplings and five extrinsic ones, CrF3, CrCl3, CrI3, FeCl3, and CoTe3, ascribed to their neglectable or antiferromagnetic inter-chain couplings. Moreover, the inter-chain magnetic coupling here is highly tunable by manipulating the inter-chain spacing, leading to experimentally feasible transitions between altermagnetic and nodal-line semiconducting states. In addition, applying external electric fields can further modulate the spin splitting. Our findings establish a highly tunable family of Q1D altermagnets, offering fundamental insights into the intricate relationship between geometry, electronic structure, and magnetism. These discoveries hold significant promises for experimental realization and future spintronic applications.
Online Preview: