Two-dimensional Kagome Materials: Theoretical Insights, Experimental Realizations, and Electronic Structures

Jan 15, 2025

Zhongqin Zhang† , Jiaqi Dai† , Cong Wang , Hua Zhu , Fei Pang , Zhihai Cheng, and Wei Ji*

In recent years, kagome materials have attracted significant attention due to their rich emergent phenomena arising from the quantum interplay of geometry, topology, spin, and correlations. However, in the search for kagome materials, it has been found that bulk compounds with electronic properties related to the kagome lattice are relatively scarce, primarily due to the hybridization of kagome layers with adjacent layers. Therefore, researchers have shown increasing interest in the discovery and construction of two-dimensional (2D) kagome materials, aiming to achieve clean kagome bands near the Fermi level in monolayer or few-layer systems. Substantial advancements have already been made in this area. In this review, we summarize the current progress in the construction and development of 2D kagome materials. We begin by introducing the geometric and electronic structures of the kagome lattice model and its variants, followed by discussions on the experimental realizations and electronic structure characterizations of 2D kagome materials. Finally, we provide an outlook on the future developments of 2D kagome materials.