Twist-angle dependent pseudo-magnetic fields in monolayer CrCl2/graphene heterostructures

Oct 30, 2024

Zhengbo Cheng#, Nanshu Liu#, Jinghao Deng, Hui Zhang, Zemin Pan, Chao Zhu, Shuangzan Lu, Yusong Bai, Xiaoyu Lin, Wei Ji*, Chendong Zhang*

The generation of pseudo-magnetic fields in strained graphene leads to quantized Landau levels in the absence of an external magnetic field, providing the potential to achieve a zero-magnetic-field analogue of quantum Hall effect. Here, we report the realization of pseudo-magnetic field in epitaxial graphene by building monolayer CrCl2/graphene heterointerface. The CrCl2 crystal structure exhibits spontaneous breaking of three-fold rotational symmetry, yielding anisotropic displacement field at the interface. Using scanning tunneling spectroscopy, we have discovered a sequence of pseudo-Landau levels associated with massless Dirac fermions. A control experiment performed on CrCl2/NbSe2 interface confirms the origin as the pseudo-magnetic field in the graphene layer that strongly interacts with the CrCl2. More interestingly, the strength of the pseudo-magnetic fields can be tuned by the twist angle between the monolayer CrCl2 and graphene, with a variation of up to threefold, depending on the twist angle of 0° to 30°. This work presents a rare 2D heterojunction for exploring PMF-related physics, such as valley Hall effect, with the advantage of easy and flexible implementation.