Controllable CVD-Growth of 2D Cr5Te8 Nanosheets withThickness-Dependent Magnetic Domains

May 9, 2023

ACS Applied Materials & Interfaces 15, 26148 (2023)

Hanxiang Wu, Jianfeng Guo, Suonan Zhaxi, Hua Xu, Shuo Mi, Le Wang, Shanshan Chen, Rui Xu, Wei Ji, Fei Pang and Zhihai Cheng

As a unique 2D magnetic material with self-intercalated structure, Cr5Te8 exhibits many intriguing magnetic properties. While its ferromagnetism of Cr5Te8 has been previously reported, the research on its magnetic domain remains unexplored. Herein, we have successfully fabricated 2D Cr5Te8 nanosheets with controlled thickness and lateral size by chemical vapor deposition (CVD). Then magnetic property measurement system revealed Cr5Te8 nanosheets exhibiting intense out-of-plane ferromagnetism with a Curie temperature (TC) of 176 K. Significantly, we reported for the first time two magnetic domains: magnetic bubbles and thickness-dependent maze-like magnetic domains in our Cr5Te8 nanosheets by cryogenic magnetic force microscopy (MFM). The domain width of the maze-like magnetic domains increases rapidly with decreasing sample thickness, meanwhile domain contrast decreases. This indicates the dominate role of ferromagnetism shifts from dipolar interactions to magnetic anisotropy. Our research not only establishes a pathway for the controllable growth of 2D magnetic materials, but also points towards novel avenues for regulating magnetic phases and methodically tuning domain characteristics.

DOI: 10.1021/acsami.3c02446