Multiferroicity in NiI2
Arxiv
Varied competition among three multiferroic phases of NiI2 from the bulk to the monolayer limit
Bulk NiI2 undergoes two successive magnetic phase transitions from a para-magnetic (PM) phase to an interlayer antiferromagnetic (AFM) phase at TN1 = 76 K and then to a spiral magnetic phase below TN2 = 59.5 K [12]. The AFM-to-spiral transition is accompanied by both rotational symmetry and inversion symmetry breaks, resulting in electric polarization through inverse DM interaction, as reflected in second harmonic generation (SHG) [13] and birefringence signals [14]
The monolayer (ML) of NiI2 was recently suggested to be a type-II multiferroic material, based on a presumed magnetic configuration and a supposed origin of the enhanced SHG signal. We found that such an assumption is flawed at the monolayer limit where a freestanding ML NiI2 showing broken C3 symmetry prefers to a striped antiferromagnetic order (AABB-AFM) along with an intralayer antiferroelectric (AFE) order[15]. However, the C3 symmetry of the monolayer may preserve under a substrate confinement, which leads to a spiral magnetic order (Spiral-V), a different spiral order from that of the bulk counterpart (Spiral-B). The Spiral-V order persists up to 2L thickness with the C3 symmetry and shows ferroelectricity (FE) ascribed to the inversed DM interaction. Thus, those three type-II multiferroic phases, namely Spiral-B+FE, Spiral-V+FE and AABB-AFM+AFE, emerge for NiI2 with different layer numbers and structural symmetries.
1. N. A. Spaldin and R. Ramesh, Nat. Mater. 18, 203 (2019)
2. H. Schmid, Ferroelectrics 162, 317 (1994)
3. M. Fiebig, T. Lottermoser, D. Meier, and M. Trassin, Nat. Rev. Mater. 1, 16046 (2016)
4. J. Wang, H. Z. J. B. Neaton, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare,, and K. M. R. N. A. Spaldin, M. Wuttig and R. Ramesh, Science 299, 1719
5. F. Zeng, G. Fan, M. Hao, Y. Wang, Y. Wen, X. Chen, J. Zhang, and W. Lu, J Alloy Compd 831, 154853 (2020)
6. D. L. Fox and J. F. Scott, Journal of Physics C: Solid State Physics 10, L329 (1977)
7. A. Prikockytė, D. Bilc, P. Hermet, C. Dubourdieu, and P. Ghosez, Phys. Rev. B 84 (2011)
8. B. B. Van Aken, T. T. Palstra, A. Filippetti, and N. A. Spaldin, Nat Mater 3, 164 (2004)
9. M. Lilienblum, T. Lottermoser, S. Manz, S. M. Selbach, A. Cano, and M. Fiebig, Nature Physics 11, 1070 (2015)
10. N. Ikeda, H. Ohsumi, K. Ohwada, K. Ishii, T. Inami, K. Kakurai, Y. Murakami, K. Yoshii, S. Mori, Y. Horibe et al., Nature 436, 1136 (2005)
11. R. E. Newnham, J. J. Kramer, W. A. Schulze, and L. E. Cross, Journal of Applied Physics 49, 6088 (1978)
12. T. Kurumaji, S. Seki, S. Ishiwata, H. Murakawa, Y. Kaneko, and Y. Tokura, Phys. Rev. B 87, 014429 (2013)
13. H. Ju, Y. Lee, K.-T. Kim, I. H. Choi, C. J. Roh, S. Son, P. Park, J. H. Kim, T. S. Jung, J. H. Kim et al., Nano Lett. 21, 5126 (2021)
14. Q. Song, C. A. Occhialini, E. Ergecen, B. Ilyas, D. Amoroso, P. Barone, J. Kapeghian, K. Watanabe, T. Taniguchi, A. S. Botana et al., Nature 602, 601 (2022)
15. N. Liu, C. Wang, C. Yan, C. Xu, J. Hu, Y. Zhang, and W. Ji, arXiv:2211.14423 (2022)