Interweaving Polar Charge Orders in a Layered Metallic Superatomic Crystal

Interweaving Polar Charge Orders in a Layered Metallic Superatomic Crystal

Phys. Rev. X 12, 041034 (2022)

Shuya Xing#, Linlu Wu#, Zilu Wang#, Xu Chen#, Haining Liu, Shuo Han, Le Lei, Linwei Zhou, Qi Zheng, Li Huang, Xiao Lin, Shanshan Chen, Liming Xie, Xiaolong Chen, Hong-Jun Gao, Zhihai Cheng*, Jiangang Guo*, Shancai Wang*, and Wei Ji*

POPULAR SUMMARY

A superatom is any cluster of atoms that collectively exhibits some properties of single atoms. When arranged into crystals through the noncovalent bonds, they can be readily assembled into nanostructures, because the reduced cohesive energy of the noncovalent bonds makes it easier to cleave the material. It is not yet clear whether such weakened energetic interaction is accompanied by a suppressed electronic interaction among the superatoms. To that end, we explore exotic electronic structures on the surface of one superatomic crystal and find strong electron-electron interactions do occur. We also find that two exotic charge orders emerge.

Recently, researchers synthesized a cubic superatom, Au6Te12Se8 (ATS), and assembled it into a 3D crystal with metallicity and superconductivity. In our experiments, we observe two charge orders on the ATS surface. One is a charge density wave that forms across repeating columns of ATS cubes. The other is a polar metallic state that arises between the columns. The polar metallic states are of particular interest, suggesting the ATS surface is an antipolar metal—a type of exotic metal where metallicity and orderly, antiparallel-oriented electric dipoles coexist. The discovery of this antipoloar metal goes one step further toward the realization of multifunctional devices, which could, in principle, perform simultaneous electrical, magnetic, and optical functions. However, we have not yet examined ATS’s ferroelectricity, which is needed for electrical control of its electrical polarization.

This ATS crystal is, to the best of our knowledge, the first antipolar metal ever found and possesses the first polar metallic state hosted in superatomic units bound by noncovalent interactions. Thus, the strong electron-electron interactions, found in the 2D superatomic layers, open a category of quantum materials that contains versatile layered nanostructures exhibiting precisely tailorable electronic structures.

Abstract

Electronic properties of superatomic crystals have not been sufficiently explored due to the versatility of their building units; moreover, their interunit couplings are even poorly understood. Here, we present a joint experiment-theory investigation of a rationally designed layered superatomic crystal of Au6Te12Se8 (ATS) cubes stacked by noncovalent intercube quasibonds. We find a sequential-emerged anisotropic triple-cube charge density wave (TCCDW) and polarized metallic states below 120 K, as revealed via scanning tunneling microscopy and spectroscopy, angle-resolved photoemission spectroscopy, transport measurement, Raman spectra, and density-functional theory. The polarized states are locked in an antiparallel configuration, which is required for maintaining the inversion symmetry of the center cube in the TCCDW. The antipolar metallic states are thus interweaved by the CDW and the polarized metallic states, and primarily ascribed to electronic effects via theoretical calculations. This work not only demonstrates a microscopic picture of the interweaved CDW and polarized charge orders in the superatomic crystal of ATS, but also sheds light on expanding the existing category of quantum materials to noncovalent solids.

A “Click” Reaction to Engineer MoS2 Field-Effect Transistors with Low Contact Resistance

A “Click” Reaction to Engineer MoS2 Field-Effect Transistors with Low Contact Resistance

ACS Nano 16(12), 20647–20655(2022)

Jialei Miao#, Linlu Wu#, Zheng Bian, Qinghai Zhu, Tianjiao Zhang, Xin Pan, Jiayang Hu, Wei Xu, Yeliang Wang, Yang Xu, Bin Yu, Wei Ji, Xiaowei Zhang*, Jingsi Qiao*, Paolo Samorì*, and Yuda Zhao*

Abstract

Two-dimensional (2D) materials with the atomically thin thickness have attracted great interest in the post-Moore’s Law era because of their tremendous potential to continue transistor downscaling and offered advances in device performance at the atomic limit. However, the metal–semiconductor contact is the bottleneck in field-effect transistors (FETs) integrating 2D semiconductors as channel materials. A robust and tunable doping method at the source and drain region of 2D transistors to minimize the contact resistance is highly sought after. Here we report a stable carrier doping method via the mild covalent grafting of maleimides on the surface of 2D transition metal dichalcogenides. The chemisorbed interaction contributes to the efficient carrier doping without degrading the high-performance carrier transport. Density functional theory results further illustrate that the molecular functionalization leads to the mild hybridization and the negligible impact on the conduction bands of monolayer MoS2, avoiding the random scattering from the dopants. Differently from reported molecular treatments, our strategy displays high thermal stability (above 300 °C) and it is compatible with micro/nano processing technology. The contact resistance of MoS2 FETs can be greatly reduced by ∼12 times after molecular functionalization. The Schottky barrier of 44 meV is achieved on monolayer MoS2 FETs, demonstrating efficient charge injection between metal and 2D semiconductor. The mild covalent functionalization of molecules on 2D semiconductors represents a powerful strategy to perform the carrier doping and the device optimization.

DOI: 10.1021/acsnano.2c07670

Metal Halides for High-Capacity Energy Storage

Metal Halides for High-Capacity Energy Storage

Small, DOI: 10.1002/smll.202205071

Hui Ma, Xusheng Wang, Cong Wang, Huanrong Zhang, Xinlei Ma, Wenjun Deng, Ruoqi Chen, Tianqi Cao, Yuqiao Chai, Yonglin He, Wei Ji, Rui Li, Jitao Chen, Junhui Ji, Wei Rao, Mianqi Xue

Abstract: High-capacity electrochemical energy storage systems are more urgently needed than ever before with the rapid development of electric vehicles and the smart grid. The most efficient way to increase capacity is to develop electrode materials with low molecular weights. The low-cost metal halides are theoretically ideal cathode materials due to their advantages of high capacity and redox potential. However, their cubic structure and large energy barrier for deionization impede their rechargeability. Here, the reversibility of potassium halides, lithium halides, sodium halides, and zinc halides is achieved through decreasing their dimensionality by the strong π–cation interactions between metal cations and reduced graphene oxide (rGO). Especially, the energy densities of KI-, KBr-, and KCl-based materials are 722.2, 635.0, and 739.4 Wh kg−1, respectively, which are higher than those of other cathode materials for potassium-ion batteries. In addition, the full-cell with 2D KI/rGO as cathode and graphite as anode demonstrates a lifespan of over 150 cycles with a considerable capacity retention of 57.5%. The metal halides-based electrode materials possess promising application prospects and are worthy of more in-depth researches.

DOI: 10.1002/smll.202205071

Improving the band alignment at PtSe2 grain boundaries with selective adsorption of TCNQ

Improving the band alignment at PtSe2 grain boundaries with selective adsorption of TCNQ

Nano Research 16, 3358-3363 (2023)

Yanhui Hou#, Ziqiang Xu#, Yan Shao, Linlu Wu, Zhongliu Liu, Genyu Hu, Wei Ji, Jingsi Qiao*, Xu Wu*, Hong-Jun Gao & Yeliang Wang*

Grain boundaries in two-dimensional (2D) semiconductors generally induce distorted band alignment and interfacial charge, which impair their electronic properties for device applications. Here, we report the improvement of band alignment at the grain boundaries of PtSe2, a 2D semiconductor, with selective adsorption of a presentative organic acceptor, tetracyanoquinodimethane (TCNQ). TCNQ molecules show selective adsorption at the PtSe2 grain boundary with strong interfacial charge. The adsorption of TCNQ distinctly improves the band alignment at the PtSe2 grain boundaries. With the charge transfer between the grain boundary and TCNQ, the local charge is inhibited, and the band bending at the grain boundary is suppressed, as revealed by the scanning tunneling microscopy and spectroscopy (STM/S) results. Our finding provides an effective method for the advancement of the band alignment at the grain boundary by functional molecules, improving the electronic properties of 2D semiconductors for their future applications.

DOI:10.1007/s12274-022-5009-8

Continuously tunable ferroelectric domain width down to the single-atomic limit in bismuth tellurite

Continuously tunable ferroelectric domain width down to the single-atomic limit in bismuth tellurite

Nature Communications 13, 5903 (2022)

Mengjiao Han#, Cong Wang#, Kangdi Niu, Qishuo Yang, Chuanshou Wang, Xi Zhang, Junfeng Dai, Yujia Wang, Xiuliang Ma, Junling Wang, Lixing Kang*, Wei Ji* Junhao Lin*

Abstract

Emerging functionalities in two-dimensional materials, such as ferromagnetism,superconductivity and ferroelectricity, open new avenues for promising nanoelectronic applications.Here, we report the discovery of intrinsic in-plane room-temperature ferroelectricity in two-dimensional Bi2TeO5 grown by chemical vapor deposition, where spontaneous polarization originates from Bi column displacements. We found an intercalated buffer layer consist ofmixed Bi/Te column as 180° domain wall which enables facile polarized domain engineering, including continuously tunable domain width by pinning different concentration of buffer layers, and even ferroelectric-antiferroelectric phase transition when the polarization unit is pinned down to single atomic column. More interestingly, the intercalated Bi/Te buffer layer can interconvert to polarized Bi columns which end up with series terraced domain walls and unusual fan-shaped ferroelectric domain. The buffer layer induced size and shape tunable ferroelectric domain in two-dimensional Bi2TeO5 offer insights into the manipulation of functionalities in van der Waals materials for future nanoelectronics.

One-Step Exfoliation Method for Plasmonic Activation of Large-Area 2D Crystals

One-Step Exfoliation Method for Plasmonic Activation of Large-Area 2D Crystals

Advanced Science 2022, DOI: 10.1002/advs.202204247

Qiang Fu#, Jia-Qi Dai#, Xin-Yu Huang#, Yun-Yun Dai, Yu-Hao Pan, Long-Long Yang, Zhen-Yu Sun, Tai-Min Miao, Meng-Fan Zhou, Lin Zhao, Wei-Jie Zhao, Xu Han, Jun-Peng Lu, Hong-Jun Gao, Xing-Jiang Zhou, Ye-Liang Wang*, Zhen-Hua Ni*, Wei Ji*, Yuan Huang*

Advanced exfoliation techniques are crucial for exploring the intrinsic properties and applications of 2D materials. Though the recently discovered Au-enhanced exfoliation technique provides an effective strategy for the preparation of large-scale 2D crystals, the high cost of gold hinders this method from being widely adopted in industrial applications. In addition, direct Au contact could significantly quench photoluminescence (PL) emission in 2D semiconductors. It is therefore crucial to find alternative metals that can replace gold to achieve efficient exfoliation of 2D materials. Here, the authors present a one-step Ag-assisted method that can efficiently exfoliate many large-area 2D monolayers, where the yield ratio is comparable to Au-enhanced exfoliation method. Differing from Au film, however, the surface roughness of as-prepared Ag films on SiO2/Si substrate is much higher, which facilitates the generation of surface plasmons resulting from the nanostructures formed on the rough Ag surface. More interestingly, the strong coupling between 2D semiconductor crystals (e.g., MoS2, MoSe2) and Ag film leads to a unique PL enhancement that has not been observed in other mechanical exfoliation techniques, which can be mainly attributed to enhanced light-matter interaction as a result of extended propagation of surface plasmonic polariton (SPP). This work provides a lower-cost and universal Ag-assisted exfoliation method, while at the same time offering enhanced SPP-matter interactions. DOI:10.1002/advs.202204247