Haixia Cheng, Xu Sun, Jun Zhou*, Shijie Wang, Hang Su*, and Wei Ji*
Abstract:
Ferroelectric Rashba semiconductors (FRS) are highly demanded for their potential capability for nonvolatile electric control of electron spins. An ideal FRS is characterized by a combination of room temperature ferroelectricity and a strong Rashba effect, which has, however, been rarely reported. Herein, we designed a room-temperature FRS by vertically stacking a Sb monolayer on a room-temperature ferroelectric In2Se3 monolayer. Our first-principles calculations reveal that the Sb/In2Se3 heterostructure exhibits a clean Rashba splitting band near the Fermi level and a strong Rashba effect coupled to the ferroelectric order. Switching the electric polarization direction enhances the Rashba effect, and the flipping is feasible with a low energy barrier of 22 meV. This Rashba–ferroelectricity coupling effect is robust against changes of the heterostructure interfacial distance and external electric fields. Such a nonvolatile electrically tunable Rashba effect at room temperature enables potential applications in next-generation data storage and logic devices operated under small electrical currents.
Yunli Da (笪蕴力)†, Ruichun Luo (罗瑞春)†, Bao Lei (雷宝), Wei Ji (季威) and Wu Zhou (周武)*
Abstract:
The design and preparation of novel quantum materials with atomic precision are crucial for exploring new physics and for device applications. Electron irradiation has been demonstrated as an effective method for preparing novel quantum materials and quantum structures that could be challenging to obtain otherwise. It features the advantages of precise control over the patterning of such new materials and their integration with other materials with different functionalities. Here, we present a new strategy for fabricating freestanding monolayer SiC within nanopores of a graphene membrane. By regulating the energy of the incident electron beam and the in-situ heating temperature in a scanning transmission electron microscope (STEM), we can effectively control the patterning of nanopores and subsequent growth of monolayer SiC within the graphene lattice. The resultant SiC monolayers seamlessly connect with the graphene lattice, forming a planar structure distinct by a wide direct bandgap. Our in-situ STEM observations further uncover that the growth of monolayer SiC within the graphene nanopore is driven by a combination of bond rotation and atom extrusion, providing new insights into the atom-by-atom self-assembly of freestanding two-dimensional (2D) monolayers.