Many intriguing quantum states of matter, such as unconventional superconductivity, magnetic phases, and fractional quantum Hall physics, emerge from the spatially correlated localized electrons in the flat bands of solid materials. By using scanning tunneling microscopy and spectroscopy (STM/STS), we report on the real-space investigation of correlated electrons in the flat band of superlattice 4𝐻𝑏−TaSe𝑥S2−𝑥. In contrast with the pristine 4𝐻𝑏−TaS2, the selenium (Se) substitutions significantly affect the interfacial transfer of correlated electrons between the charge density wave (CDW) states of 1𝑇- and 1𝐻−TaS2 layers and contribute the real-space fractional electron-filling configurations with the distributed electron-filled and void Star of David (SoD) clusters of the 1𝑇 layer. The site-specific STS spectra directly reveal their respective prominent spectra weight above 𝐸F and symmetric Mott-like spectra. In addition, the spatial distributions of these electron-filled SoDs in the 1𝑇 layer of 4𝐻𝑏−TaSe0.7S1.3 demonstrate different local short-range order, clearly indicating the complex neighboring interactions among the localized electrons in the flat band of the 1𝑇 layer. Our results not only provide in-depth insight into correlated electrons in the flat CDW band but also provide a simple platform to manipulate the electron-correlation-related quantum states.
Kagome lattices facilitate various quantum phases, yet in bulk materials, their kagome flat-bands often interact with bulk bands, suppressing kagome electronic characteristics for hosting these phases. Here, we use density-functional-theory calculations to predict the geometric and electronic structures, as well as the topological and magnetic properties, of a series of MoTe2-x kagome monolayers formed by mirror-twin-boundary (MTB) loops. We analyze nine MTB-loop configurations of varying sizes and arrangements to assess their impact on various properties. Within the intrinsic bandgap of MoTe2, we identify two sets of kagome bands, originating from in-plane and out-of-plane Te p-orbitals at MTB-loop edges and -vertices, respectively. Three configurations exhibit superior stability, while three others show comparable stability. Among these, four display bandgaps and potentially non-zero Z2 topological invariants, suggesting possible topological phases, while the remaining two are metallic and feature Stoner magnetization. These findings guide the design of kagome-based two-dimensional materials with tunable electronic, topological, and magnetic properties.
Haixia Cheng, Xu Sun, Jun Zhou*, Shijie Wang, Hang Su*, and Wei Ji*
Abstract:
Ferroelectric Rashba semiconductors (FRS) are highly demanded for their potential capability for nonvolatile electric control of electron spins. An ideal FRS is characterized by a combination of room temperature ferroelectricity and a strong Rashba effect, which has, however, been rarely reported. Herein, we designed a room-temperature FRS by vertically stacking a Sb monolayer on a room-temperature ferroelectric In2Se3 monolayer. Our first-principles calculations reveal that the Sb/In2Se3 heterostructure exhibits a clean Rashba splitting band near the Fermi level and a strong Rashba effect coupled to the ferroelectric order. Switching the electric polarization direction enhances the Rashba effect, and the flipping is feasible with a low energy barrier of 22 meV. This Rashba–ferroelectricity coupling effect is robust against changes of the heterostructure interfacial distance and external electric fields. Such a nonvolatile electrically tunable Rashba effect at room temperature enables potential applications in next-generation data storage and logic devices operated under small electrical currents.