Electronic Janus lattice and kagome-like bands in coloring-triangular MoTe2 monolayers

Electronic Janus lattice and kagome-like bands in coloring-triangular MoTe2 monolayers

Nature Communications 14, 6320 (2023).

Le Lei#, Jiaqi Dai#, Haoyu Dong#, Yanyan Geng, Feiyue Cao, Cong Wang, Rui Xu, Fei Pang, Zheng-Xin Liu, Fangsen Li, Zhihai Cheng*, Guang Wang* and Wei Ji*

Abstract: Polymorphic structures of transition metal dichalcogenides (TMDs) host exotic electronic states, like charge density wave and superconductivity. However, the number of these structures is limited by crystal symmetries, which poses a challenge to achieving tailored lattices and properties both theoretically and experimentally. Here, we report a coloring triangle (CT) latticed MoTe2 monolayer, termed CT-MoTe2, constructed by controllably introducing uniform and ordered mirror-twin-boundaries into a pristine monolayer in molecular beam epitaxy. Low-temperature scanning tunneling microscopy and spectroscopy (STM/STS) together with theoretical calculations reveal that the monolayer has an electronic Janus lattice, i.e., an energy-dependent atomic-lattice and a Te pseudo-sublattice, and shares the identical geometry with the Mo5Te8 layer. Dirac-like and flat electronic bands inherently existing in the CT lattice are identified by two broad and two prominent peaks in STS spectra, respectively, and verified with density-functional-theory calculations. Two types of intrinsic domain boundaries were observed, one of which the electronic-Janus-lattice feature maintains, implying potential applications as an energy-tunable electron-tunneling barrier in future functional devices.

DOI: 10.1038/s41467-023-42044-5; arXiv:2302.06166

Intralayer Negative Poisson’s Ratio in 2D Black Arsenic by Strain Engineering

Intralayer Negative Poisson’s Ratio in 2D Black Arsenic by Strain Engineering

Small Strucutures (2023), DOI: 10.1002/sstr.202300178

Jingjing Zhang#, Weihan Zhang#, Leining Zhang#, Guoshuai Du, Yunfei Yu, Qinglin Xia, Xu Wu, Yeliang Wang, Wei Ji, Jingsi Qiao*, Feng Ding*, Yabin Chen*

Abstract:

Negative Poisson’s ratio as the anomalous characteristic generally exists in artificial architectures, such as re-entrant and honeycomb structures. The structures with negative Poisson’s ratio have attracted intensive attention due to their unique auxetic effect and many promising applications in shear-resistant and energy absorption fields. However, experimental observation of negative Poisson’s ratio in natural materials barely happens, although various 2D layered materials are predicted in theory. Herein, the anisotropic Raman response and the intrinsic intralayer negative Poisson’s ratio of 2D natural black arsenic (b-As) via strain engineering strategy are reported. The results are evident by the detailed Raman spectrum of b-As under uniaxial strain together with density functional theory calculations. It is found that b-As is softer along the armchair than zigzag direction. The anisotropic mechanical features and van der Waals interactions play essential roles in strain-dependent Raman shifts and negative Poisson’s ratio in the natural b-As along zigzag direction. This work may shed a light on the mechanical properties and potential applications of 2D puckered materials.

DOI: 10.1002/sstr.202300178

Discovery and construction of surface kagome electronic states induced by p-d electronic hybridization in Co3Sn2S

Discovery and construction of surface kagome electronic states induced by p-d electronic hybridization in Co3Sn2S

Nature Communications 14, 5230 (2023)

Li Huang#, Xianghua Kong#, Qi Zheng#, Yuqing Xing#, Hui Chen, Yan Li, Zhixin Hu, Shiyu Zhu, Jingsi Qiao, Yu-Yang Zhang, Haixia Cheng, Zhihai Cheng, Xianggang Qiu, Enke Liu, Hechang Lei, Xiao Lin, Ziqiang Wang, Haitao Yang*, Wei Ji*, Hong-Jun Gao*

Kagome-lattice materials possess attractive properties for quantum computing applications, but their synthesis remains challenging. Herein, based on the compelling identification of the two cleavable surfaces of Co3Sn2S2, we show surface kagome electronic states (SKESs) on a Sn-terminated triangular Co3Sn2S2 surface. Such SKESs are imprinted by vertical p-d electronic hybridization between the surface Sn (subsurface S) atoms and the buried Co kagome-lattice network in the Co3Sn layer under the surface. Owing to the subsequent lateral hybridization of the Sn and S atoms in a corner-sharing manner, the kagome symmetry and topological electronic properties of the Co3Sn layer is proximate to the Sn surface. The SKESs and both hybridizations were verified via qPlus non-contact atomic force microscopy (nc-AFM) and density functional theory calculations. The construction of SKESs with tunable properties can be achieved by the atomic substitution of surface Sn (subsurface S) with other group III-V elements (Se or Te), which was demonstrated theoretically. This work exhibits the powerful capacity of nc-AFM in characterizing localized topological states and reveals the strategy for synthesis of large-area transition-metal-based kagome-lattice materials using conventional surface deposition techniques.

Achieving a Large Energy Gap in Bi(110) Atomically Thin Films

Achieving a Large Energy Gap in Bi(110) Atomically Thin Films

Small Structures 4, 2300207 (2023).

Qing Yuan#, Yafei Li#, Deping Guo, Cancan Lou, Xingxia Cui, Guangqiang Mei, Chengxiang Jiao, Kai Huang, Xuefeng Hou, Wei Ji*, Limin Cao*, Min Feng*

Abstract:

Metal–insulator transition has long been one of the key subjects in condensed matter systems. Herein, the emergence of a large energy gap (Eg, 0.8–1.0 eV) in Bi(110) two-atomic-layer nanoribbons grown on a SnSe(001) substrate is reported, which normally has an intrinsic semimetal-like characteristic. The existence of this abnormally large Eg in Bi(110) is, however, determined by Bi coverage. When coverage is above ≈64 ± 2%, Eg vanishes, and instead, a Bi(110) semimetal-like phase appears through a singular insulator–metal transition. Measurements using qPlus atomic force microscopy demonstrate that either insulating or semimetal-like Bi(110) possesses a distorted black phosphorous structure with noticeable atomic buckling. Density function theory fully reproduces the semimetal-like Bi(110) on SnSe(001). However, none of the insulating phases with this large Eg could be traced. Although the underlying mechanism of the large Eg and the insulator-metal transition requires further exploration, experiments demonstrate that similar results can be achieved for Bi grown on SnS, the structural analog of SnSe, exhibiting an even larger Eg of ≈2.3 eV. The experimental strategy may be generalized to utilization of group-IV monochalcogenides to create Bi(110) nanostructures with properties unachievable on other surfaces, providing an intriguing platform for exploring the interesting quantum electronic phases.

DOI: 10.1002/sstr.202300207

Layer Sliding And Twisting Induced Electronic Transitions In Correlated Magnetic 1t-Nbse2 Bilayers

Layer Sliding And Twisting Induced Electronic Transitions In Correlated Magnetic 1t-Nbse2 Bilayers

Advanced Functional Materials 33, 2302989 (2023)

Jiaqi Dai#, Jingsi Qiao#, Cong Wang, Linwei Zhou, Xu Wu, Liwei Liu, Xuan Song, Fei Pang, Zhihai Cheng, Xianghua Kong, Yeliang Wang*, Wei Ji*

Abstract:

Correlated 2D layers, like 1T-phases of TaS2, TaSe2, and NbSe2, exhibit rich tunability through varying interlayer couplings, which promotes the understanding of electron correlation in the 2D limit. However, the coupling mechanism is, so far, poorly understood and is tentatively ascribed to interactions among the dz2 orbitals of Ta or Nb atoms. Here, it is theoretically shown that the interlayer hybridization and localization strength of interfacial Se pz orbitals, rather than Nb dz2 orbitals, govern the variation of electron-correlated properties upon interlayer sliding or twisting in correlated magnetic 1T-NbSe2 bilayers. Each of the layers is in a star-of-David (SOD) charge-density-wave phase. Geometric and electronic structures and magnetic properties of 28 different stacking configurations are examined and analyzed using density-functional-theory calculations. It is found that the SOD contains a localized region, in which interlayer Se pz hybridization plays a paramount role in varying the energy levels of the two Hubbard bands. These variations lead to three electronic transitions among four insulating states, which demonstrate the effectiveness of interlayer interactions to modulate correlated magnetic properties in a prototypical correlated magnetic insulator.

DOI: 10.1002/adfm.202302989