Yangliu Wu, Zhaozhuo Zeng, Haipeng Lu, Xiaocang Han, Chendi Yang, Nanshu Liu, Xiaoxu Zhao, Liang Qiao, Wei Ji*, Renchao Che, Longjiang Deng*, Peng Yan* and Bo Peng*
Abstract:
Multiferroic materials have been intensively pursued to achieve the mutual control of electric and magnetic properties. The breakthrough progress in 2D magnets and ferroelectrics encourages the exploration of low-dimensional multiferroics, which holds the promise of understanding inscrutable magnetoelectric coupling and inventing advanced spintronic devices. However, confirming ferroelectricity with optical techniques is challenging in 2D materials, particularly in conjunction with antiferromagnetic orders in single- and few-layer multiferroics. Here, we report the discovery of 2D vdW multiferroic with out-of plane ferroelectric polarization in trilayer NiI2 device, as revealed by scanning reflective magnetic circular dichroism microscopy and ferroelectric hysteresis loops. The evolution between ferroelectric and antiferroelectric phases has been unambiguously observed. Moreover, the magnetoelectric interaction is directly probed by magnetic control of the multiferroic domain switching. This work opens up opportunities for exploring new multiferroic orders and multiferroic physics at the limit of single or few atomic layers, and for creating advanced magnetoelectronic devices.
Realizing magnetic skyrmions in two-dimensional (2D) van der Waals (vdW) ferromagnets offers unparalleled prospects for future spintronic applications. The room-temperature ferromagnet Fe3GaTe2 provides an ideal platform for tailoring these magnetic solitons. Here, skyrmions of distinct topological charges are artificially introduced and spatially engineered using magnetic force microscopy (MFM). The skyrmion lattice is realized by specific field-cooling process, and can be further controllably erased and painted via delicate manipulation of tip stray field. The skyrmion lattice with opposite topological charges (S = +1 or -1) can be tailored at the target regions to form topological skyrmion junctions (TSJs) with specific configurations. The delicate interplay of TSJs and spin-polarized device current were finally investigated via the in-situ transport measurements, alongside the topological stability of TSJs. Our results demonstrate that Fe3GaTe2 not only serves as a potential building block for room-temperature skyrmion-based spintronic devices, but also presents promising prospects for Fe3GaTe2-based heterostructures with the engineered topological spin textures.
Zhihong Zhang, Linwei Zhou, Zhaoxi Chen* , Antonín Jaroš, Miroslav Kolíbal, Petr Bábor, Quanzhen Zhang, Changlin Yan, Ruixi Qiao, Qing Zhang, Teng Zhang, Wei Wei, Yi Cui, Jingsi Qiao, Liwei Liu, Lihong Bao, Haitao Yang, Zhihai Cheng, Yeliang Wang, Enge Wang, Zhi Liu, Marc Willinger, Hong-Jun Gao, Kaihui Liu*, Wei Ji*, and Zhu-Jun Wang*
Abstract:
Direct growth of large-area vertically stacked two-dimensional (2D) van der Waal (vdW) materials is a prerequisite for their high-end applications in integrated electronics, optoelectronics and photovoltaics. Currently, centimetre- to even metre-scale monolayers of single-crystal graphene (MLG) and hexagonal boron nitride (h-BN) have been achieved by epitaxial growth on various single-crystalline substrates. However, in principle, this success in monolayer epitaxy seems extremely difficult to be replicated to bi- or few-layer growth, as the full coverage of the first layer was believed to terminate the reactivity of those adopting catalytic metal surfaces. Here, we report an exceptional layer-by-layer chemical vapour deposition (CVD) growth of large size bi-layer graphene single-crystals, enabled by proximity catalytic activity from platinum (Pt) surfaces to the outermost graphene layers. In-situ growth and real-time surveillance experiments, under well-controlled environments, unambiguously verify that the growth does follow the layer-by-layer mode on open surfaces of MLG/Pt(111). First-principles calculations indicate that the transmittal of catalytic activity is allowed by an appreciable electronic hybridisation between graphene overlayers and Pt surfaces, enabling catalytic dissociation of hydrocarbons and subsequently direct graphitisation of their radicals on the outermost sp2 carbon surface. This proximity catalytic activity is also proven to be robust for tube-furnace CVD in fabricating single-crystalline graphene bi-, tri- and tetra-layers, as well as h-BN few-layers. Our findings offer an exceptional strategy for potential controllable, layer-by-layer and wafer-scale growth of vertically stacked few-layered 2D single crystals.
Many intriguing quantum states of matter, such as unconventional superconductivity, magnetic phases, and fractional quantum Hall physics, emerge from the spatially correlated localized electrons in the flat bands of solid materials. By using scanning tunneling microscopy and spectroscopy (STM/STS), we report on the real-space investigation of correlated electrons in the flat band of superlattice 4𝐻𝑏−TaSe𝑥S2−𝑥. In contrast with the pristine 4𝐻𝑏−TaS2, the selenium (Se) substitutions significantly affect the interfacial transfer of correlated electrons between the charge density wave (CDW) states of 1𝑇- and 1𝐻−TaS2 layers and contribute the real-space fractional electron-filling configurations with the distributed electron-filled and void Star of David (SoD) clusters of the 1𝑇 layer. The site-specific STS spectra directly reveal their respective prominent spectra weight above 𝐸F and symmetric Mott-like spectra. In addition, the spatial distributions of these electron-filled SoDs in the 1𝑇 layer of 4𝐻𝑏−TaSe0.7S1.3 demonstrate different local short-range order, clearly indicating the complex neighboring interactions among the localized electrons in the flat band of the 1𝑇 layer. Our results not only provide in-depth insight into correlated electrons in the flat CDW band but also provide a simple platform to manipulate the electron-correlation-related quantum states.
Kagome lattices facilitate various quantum phases, yet in bulk materials, their kagome flat-bands often interact with bulk bands, suppressing kagome electronic characteristics for hosting these phases. Here, we use density-functional-theory calculations to predict the geometric and electronic structures, as well as the topological and magnetic properties, of a series of MoTe2-x kagome monolayers formed by mirror-twin-boundary (MTB) loops. We analyze nine MTB-loop configurations of varying sizes and arrangements to assess their impact on various properties. Within the intrinsic bandgap of MoTe2, we identify two sets of kagome bands, originating from in-plane and out-of-plane Te p-orbitals at MTB-loop edges and -vertices, respectively. Three configurations exhibit superior stability, while three others show comparable stability. Among these, four display bandgaps and potentially non-zero Z2 topological invariants, suggesting possible topological phases, while the remaining two are metallic and feature Stoner magnetization. These findings guide the design of kagome-based two-dimensional materials with tunable electronic, topological, and magnetic properties.