Exploring Potential for Semiconductor to Quantum Anomalous Hall Insulator Transitions via Substrate-Induced Structural Modifications in Ti3Se4 Monolayers

Exploring Potential for Semiconductor to Quantum Anomalous Hall Insulator Transitions via Substrate-Induced Structural Modifications in Ti3Se4 Monolayers

Zhipeng Song#, Haixia Cheng#, Yun Cao, Qi Zheng, Yurou Guan, Chen Liu, Jierui Huang1 Li Huang, Jiaou Wang, Hui Guo, Guangchao Chen, Chengmin Shen, Shixuan Du, Hongliang Lu*, Wei Ji*, Xiao Lin*, and Hong-Jun Gao

The quantum anomalous Hall (QAH) effect in two-dimensional (2D) topological materials has attracted widespread attention due to its potential for dissipationless chiral edge transport without an external magnetic field, which is highly promising for low-power electronic applications. However, identifying materials that exhibit these properties remains particularly challenging, as only a limited number of such materials are known, raising the intriguing question of whether it is possible to induce the QAH effect in materials with ordinary properties through structural modifications. In this work, we grow an unreported 2D titanium selenide (Ti3Se4) on a Cu(111) substrate using molecular beam epitaxy. Low-energy electron diffraction and scanning tunneling microscopy characterizations reveal a brick-like structure. First-principles calculations and X-ray photoelectron spectroscopy measurements confirm its composition to be Ti3Se4. Our calculations further demonstrate that monolayer Ti3Se4, in its grown form on Cu(111), has the potential to host the QAH effect. Interestingly, when we examine its freestanding form, the monolayer transitions from a QAH insulator candidate into a conventional semiconductor, despite only minor differences in their atomic structures. This transition enlightens us that subtle lattice adjustments can induce a transition from semiconductor to QAH properties in freestanding Ti3Se4. This discovery provides a potential route to engineering practical materials that may exhibit the QAH effect.

Magnetic and Multiferroic Properties of Two-Dimensional FePX3 and CuFeP2X6 (X = S, Se, and Te)

Magnetic and Multiferroic Properties of Two-Dimensional FePX3 and CuFeP2X6 (X = S, Se, and Te)

Qingyang Wang, Mengmeng Niu, Weikang Zhou, Yicheng Ma, Chun Huang, Gege Yang, Yan Shao, Xu Wu, Cong Wang, Wei Ji*, Yeliang Wang*, Jingsi Qiao*

Two-dimensional (2D) multiferroic materials have significant application potential for novel storage devices due to their tunable magnetic and ferroelectric properties. Transition metal phosphorus chalcogenides MPX3 (X = S, Se, and Te) were found to be magnetic and multiferroic with excellent tunability, promising for multifunctionalized applications. In this study, we investigated the antiferromagnetic and antiferroelectric properties of two-dimensional FePX3 and CuFeP2X6 by density functional theory. Monolayer FePS3/FePSe3 and FePTe3 take intralayer zigzag and Neel antiferromagnetic ground states, respectively. This tunability of intralayer magnetism results from the competition between the spin-exchange interactions of the first and second nearest Fe atoms. Bilayer FePX3 shows weak interlayer interactions and keeps electronic and magnetic characteristics similar to those of the monolayer. Moreover, by introducing the nonmagnetic Cu atom into FePX3, the inversion symmetry broken induces CuFeP2X6 to be multiferroic materials. The transition barrier between ferroelectric (FE) and antiferroelectric (AFE) phases in CuFeP2S6 and CuFeP2Se6 is 0.09 and 0.04 eV/f.u., similar to well-known multiferroic CuCrP2S6. FE-to-AFE phase transition is expected to be achieved by applying an electric field and uniaxial strain. CuFeP2Te6 shows the ground state with a distorted paraelectric phase. Our results show the fundamental properties and in-depth understanding of 2D FePX3 and CuFeP2X6, guiding further investigation of 2D multifunctionalized magnetoelectric devices.

Layered semiconducting electrides in p-block metal oxides

Layered semiconducting electrides in p-block metal oxides

Jiaqi Dai#, Feng Yang, Cong Wang, Fei Pang, Zhihai Cheng, and Wei Ji*

In conventional electrides, excess electrons are localized in crystal voids to serve as anions. Most of these electrides are metallic and the metal cations are primarily from the s-block, d-block, or rare-earth elements. Here, we report a class of p-block metal-based electrides found in bilayer SnO and PbO, which are semiconducting and feature electride states in both the valence band (VB) and conduction band (CB), as referred to 2D “bipolar” electrides. These bilayers are hybrid electrides where excess electrons are localized in the interlayer region and hybridize with the orbitals of Sn atoms in the VB, exhibiting strong covalent-like interactions with neighboring metal atoms. Compared to previously studied hybrid electrides, the higher electronegativity of Sn and Pb enhances these covalent-like interactions, leading to largely enhanced semiconducting bandgap of up to 2.5 eV. Moreover, the CBM primarily arises from the overlap between metal states and interstitial charges, denoting a potential electride and forming a free-electron-like (FEL) state with small effective mass. This state offers high carrier mobilities for both electron and hole in bilayer SnO, suggesting its potential as a promising p-type semiconductor material.

研究组二维界面磁电调控合作研究获新进展

研究组二维界面磁电调控合作研究获新进展

近日,中国人民大学物理学院王聪副研究员、季威教授等与北京大学物理学院陈剑豪教授、北京大学谢心澄院士、刘阳研究员、叶堉研究员、山西大学韩拯教授等组成研究团队,采用第一性原理计算结合高精密电容测量的研究方法,在双层石墨烯与二维磁性材料CrOCl组成的异质结体系中观测到非易失态的磁电协同控制行为。相关研究成果以“Magnetic-Electrical Synergetic Control of Non-Volatile States in Bilayer Graphene-CrOCl Heterostructures”为题发表于《先进材料》(Advanced Materials)

新兴二维磁性材料具有原子尺度厚度与表面无悬挂键的特点,消除了异质集成时的晶格失配限制,同时在外场下调控灵敏,为基础研究及其潜在自旋电子学应用提供了新材料平台。二维磁性材料在外场下调控灵敏,其参与组成的异质界面可能引入拓扑磁性、异质结多铁、关联绝缘态、非常规超导、量子反常霍尔效应等新奇物性。界面的物性调控作用的研究方兴未艾。

过去,非磁性衬底与磁性二维材料之间的界面耦合通常被人们忽略,物理学院团队发现二维衬底通过非共价相互作用可以显著调制二维材料的磁性和电子结构。例如,他们与实验合作共同发现与证实 CrTe2单层极限下新颖的的磁序转变,在CrTe2与石墨衬底形成的异质体系中,晶格失配导致的应变可以将层内反铁磁交换耦合增强3倍以上(Nat. Comm. 2022,DOI: 10.1038/s41467-021-27834-z)。与实验合作在国际上首次发现CrSe2具有厚度依赖层间磁耦合转变特性且在空气中高度稳定,在CrSe2与WSe2形成的异质结体系中存在更复杂的界面耦合,处在moiré周期不同位置的CrSe2出现不同磁化方向的磁畴(Nat. Mater., 2021, DOI: 10.1038/s41563-021-00927-2)。他们理论预测了CrSe2与CrTe2的应变调控相图,发现衬底外延应变可以有效调控其单层层内磁基态与易磁化轴方向,理论预测相图与当前实验制备的异质体系测量结果一致(Phys. Rev. B 2022, DOI: 10.1103/PhysRevB.106.L081401)。然而二维磁性材料对其相邻范德华材料的性能调控仍有待进一步研究。

研究团队前期研究发现,CrOCl作为一种二维反铁磁半导体具有优异的可调控性,CrOCl与石墨烯等组成的异质结中存在独特的迁移率保持和关联增强的电荷转移特性。然而,CrOCl层内磁结构的转变对界面物性的调控作用仍有待揭示,同时前期研究多为输运测量,难以表征通道带隙附近载流子密度的变化。针对这一现状,他们成功构建了双层石墨烯与CrOCl的异质结构,发现了一种前所未有的磁电协同控制机制。当CrOCl从反铁磁(AFM)状态转变为亚铁磁类(FiM)状态时,通过磁场调控,可以观察到双层石墨烯中的电荷态密度发生显著变化,呈现出一种磁滞回线行为。这种磁滞行为仅依赖于磁化历史,而非电栅控历史,可以通过电学手段进行调控,从而实现了对这些非易失态的协同控制。

图1. BLG-CrOCl的电容测量电路和和开关行为。(a) BLG-CrOCl器件结构和电容测量电路。(b) 电容和(c) 反对称电容回滞。(d) 图1(d) 中位置3处的电容回滞温度依赖性。(e) BLG-CrOCl的开关行为。

虽然实验测量观察到了双层石墨烯(BLG)与CrOCl的异质结构中磁结构调控的电子态变化,但其物理起源还尚且未知。第一性原理计算在这方面表现出其特有的优势。为了深入理解这一物理现象,他们进行了第一性原理计算,构建了一个由5×4 的CrOCl晶格和8×3√3的石墨烯晶格组成的异质结模型以计算AFM状态,一个由5×15 的CrOCl晶格和8×11√3的石墨烯晶格组成的异质结模型以计算FiM状态。计算结果表明,在CrOCl的磁相转变过程中,双层石墨烯与CrOCl之间发生了磁场控制的电荷转移。这种电荷转移导致了双层石墨烯中费米能级的显著上移,进而影响了其导电性质。研究还发现,在CrOCl的处于AFM与FiM两种磁结构时能带结构与价带顶位置均会改变,其与界面的石墨烯之间的电荷转移也因此受到调控,为磁电协同控制提供了物理基础。此外,他们考虑了CrOCl与石墨烯之间的转角,发现角度对其物理图像没有显著改变,这与实验观测现象高度一致。

图2. BLG-CrOCl中磁场调控的物理来源。(a) 5×4 的CrOCl晶格和8×3√3的石墨烯晶格组成的异质结模型的顶视图。(b-c) 石墨烯与CrOCl之间的电荷转移。(d-g) CrOCl在AFM与FiM磁状态下的电子结构与电导调控。

该工作通过高精密电容测量,结合第一性原理计算,揭示了BLG-CrOCl异质结构中磁电协同的调控机制,为表界面新物态的探索与利用提供了新的材料平台,有望实现具有非易失性存储功能的新型电子器件。相关研究成果于11月28日以“Magnetic-Electrical Synergetic Control of Non-Volatile States in Bilayer Graphene-CrOCl Heterostructures”为题在线发表在《先进材料》(Advanced Materials)上,物理学院副研究员王聪和北京大学物理学院量子材料科学中心博士后曹世民、博士研究生郑润杰为论文的共同第一作者。物理学院季威教授和北京大学陈剑豪教授、北京大学叶堉研究员、山西大学韩拯教授为论文的共同通讯作者。该工作的理论计算部分由人民大学完成,实验部分由合作单位完成。该工作得到了国家重点研发计划、国家自然科学基金、教育部、中国科学院和中国人民大学的资助。

文章链接:Magnetic‐Electrical Synergetic Control of Non‐Volatile States in Bilayer Graphene‐CrOCl Heterostructures – Cao – 2025 – Advanced Materials – Wiley Online Library

Buffer layer stabilized single-unit cell ferroelectric Bi2TeO5

Buffer layer stabilized single-unit cell ferroelectric Bi2TeO5

Yunfei Li#, Alei Li#, Cong Wang#, Mengjiao Han*, Juntong Zhu, Yunlei Zhong, Pin Zhao, Ge Song, Shun Wang, Zongjie Shen, Lin Wang, Hui Zhang, Wu Zhou, Lu You, Wei Ji*, Junhao Lin*, Lixing Kang*

Miniaturizing van der Waals (vdW) ferroelectric materials to atomic scales is essential for modern devices like nonvolatile memory and sensors. To unlock their full potential, their growth mechanisms, interface effects, and stabilization are preferably investigated, particularly for ultrathin 2D nanosheets with single-unit cell thickness. This study focuses on Bi2TeO5 (BTO) and utilizes precise control over growth kinetics at the nucleation temperature to create specific interfacial reconfiguration layers. Ultrathin BTO nanosheets with planar ferroelectricity at a single-unit cell thickness are successfully grown. Atomic-scale characterization reveals a disordered distribution of elements in the interfacial layer, which buffers strain from lattice mismatch. The theoretical calculations support these observations. Furthermore, this strategy also can be extended to the growth of a variety of 2D ternary oxide nanosheets. This work contributes to a better understanding of growth and stability mechanisms in 2D ultrathin nanosheets.