Artificially creating emergent interfacial antiferromagnetism and its manipulation in a magnetic van-der-Waals heterostructure

Artificially creating emergent interfacial antiferromagnetism and its manipulation in a magnetic van-der-Waals heterostructure

Xiangqi Wang†, Cong Wang†, Yupeng Wang†, Chunhui Ye, Azizur Rahman, Min Zhang, Suhan Son, Jun Tan*, Zengming Zhang*, Wei Ji*, Je-Geun Park6,7,8, and Kai-Xuan Zhang†*

Van der Waals (vdW) magnets, with their two-dimensional (2D) atomic structures, provide a unique platform for exploring magnetism at the nanoscale. Although there have been numerous reports on their diverse quantum properties, the emergent interfacial magnetism— artificially created at the interface between two layered magnets—remains largely unexplored. This work presents observations of such emergent interfacial magnetism at the ferromagnet/antiferromagnet interface in a vdW heterostructure. We report the discovery of an intermediate Hall resistance plateau in the anomalous Hall loop, indicative of emergent interfacial antiferromagnetism fostered by the heterointerface. This plateau can be stabilized and further manipulated under varying pressures but collapses under high pressures over 10 GPa. Our theoretical calculations reveal that charge transfer at the interface is pivotal in establishing the interlayer antiferromagnetic spin-exchange interaction. This work illuminates the previously unexplored emergent interfacial magnetism at a vdW interface comprised of a ferromagnetic metal and an antiferromagnetic insulator, and highlights its gradual evolution under increasing pressure. These findings enrich the portfolio of emergent interfacial magnetism and pave the way for future investigations on vdW magnetic interfaces and the development of next-generation spintronic devices.

Filling-dependent intertwined electronic and atomic orders in the flat-band state of 1T TaS2

Filling-dependent intertwined electronic and atomic orders in the flat-band state of 1T TaS2

Yanyan Geng+, Haoyu Dong+, Renhong Wang+, Jianfeng Guo, Shuo Mi, Le Lei, Yan Li, Li Huang, Fei Pang, Rui Xu, Weiqiang Yu, Hong-Jun Gao, Wei Ji*, Weichang Zhou*, and Zhihai Cheng*

The delicate interplay among the complex intra-/inter-layer electron-electron and electron-lattice interactions is the fundamental prerequisite of these exotic quantum states, such as superconductivity, nematic order, and checkerboard charge order. Here we explore the filling-dependent multiple stable intertwined electronic and atomic orders of flat-band state of 1T-TaS2 encompassing hole order, phase orders, coexisting left- and right-chiral orders and mixed phase/chiral orders via scanning tunneling microscopy (STM). Combining first principles calculations, the novel emergent electronic/ atomic orders can be attributed to the weakening of electron-electron correlations and stacking-dependent interlayer interactions. Moreover, achiral intermediate ring-like clusters and nematic charge density wave (CDW) states are successfully realized in intralayer chiral domain wall and interlayer heterochiral stacking regions through chiral overlap configurations. Our study not only deepens the understanding of filling-dependent electronic/atomic orders in flat-band systems, but also offers new perspectives for exploring exotic quantum states in correlated electronic systems.

Si-CMOS Compatible Synthesis of Wafer-Scale 1T-CrTe2 with Step-Like Magnetic Transition

Si-CMOS Compatible Synthesis of Wafer-Scale 1T-CrTe2 with Step-Like Magnetic Transition

Jiwei Liu#, Cong Wang#, Yuwei Wang, Jianbin Xu, Wei Ji*, Mingsheng Xu*, Deren Yang*

Two-dimensional room-temperature ferromagnet CrTe2 is a promising candidate material for spintronic applications. However, its large-scale and cost-effective synthesis remains a challenge. Here, we report the fine controllable synthesis of wafer-scale 1T-CrTe2 films on a SiO2/Si substrate using plasma-enhanced chemical vapor deposition at temperatures below 400 ºC. Magnetic hysteresis measurements reveal that the synthesized 1T-CrTe2 films exhibit perpendicular magnetic anisotropy along with distinct step-like magnetic transitions. We find that 1T-CrTe2 is susceptible to oxygen adsorption even in ambient conditions. Our theoretical calculations indicate that the oxidation of surface layers is crucial for the absence of out-of-plane easy axis in few-layer CrTe2, while the interlayer antiferromagnetic coupling among the upper surface layers leads to the observed step-like magnetic transitions. Our study provides a Si-CMOS compatible approach for the fabrication of magnetic two-dimensional materials and highlights how unintentional adsorbents or dopants can significantly influence the magnetic behaviors of these materials.

2D Kagome Materials: Theoretical Insights, Experimental Realizations, and Electronic Structures

2D Kagome Materials: Theoretical Insights, Experimental Realizations, and Electronic Structures

Zhongqin Zhang† , Jiaqi Dai† , Cong Wang , Hua Zhu , Fei Pang , Zhihai Cheng, and Wei Ji*

In recent years, kagome materials have attracted significant attention due to their rich emergent phenomena arising from the quantum interplay of geometry, topology, spin, and correlations. However, in the search for kagome materials, it has been found that bulk compounds with electronic properties related to the kagome lattice are relatively scarce, primarily due to the hybridization of kagome layers with adjacent layers. Therefore, researchers have shown increasing interest in the discovery and construction of two-dimensional (2D) kagome materials, aiming to achieve clean kagome bands near the Fermi level in monolayer or few-layer systems. Substantial advancements have already been made in this area. In this review, we summarize the current progress in the construction and development of 2D kagome materials. We begin by introducing the geometric and electronic structures of the kagome lattice model and its variants, followed by discussions on the experimental realizations and electronic structure characterizations of 2D kagome materials. Finally, we provide an outlook on the future developments of 2D kagome materials.

Interlayer coupling driven rotation of the magnetic easy axis in MnS⁢e2 monolayers and bilayers

Interlayer coupling driven rotation of the magnetic easy axis in MnS⁢e2 monolayers and bilayers

Zhongqin Zhang, Cong Wang†,*, PengJie Guo, Linwei Zhou, Yuhao Pan, Zhixin Hu*, and Wei Ji*

Interlayer coupling plays a critical role in tuning the electronic structures and magnetic ground states of two-dimensional materials, influenced by the number of layers, interlayer distance, and stacking order. However, its effect on the orientation of the magnetic easy axis remains underexplored. In this study, we demonstrate that interlayer coupling can significantly alter the magnetic easy-axis orientation, as shown by the magnetic easy-axis of monolayer 1T-MnSe2 tilting 33° from the z-axis, while aligning with the z-axis in the bilayer. This change results from variations in orbital occupations near the Fermi level, particularly involving nonmetallic Se atoms. Contrary to the traditional focus on magnetic metal atoms, our findings reveal that Se orbitals play a key role in influencing the easy-axis orientation and topological Chern numbers. Furthermore, we show that the occupation of Se p-orbitals, and consequently the magnetic anisotropy, can be modulated by factors such as stacking order, charge doping, and external strain. Our results highlight the pivotal role of interlayer coupling in tuning the magnetic properties of layered materials, with important implications for spintronic applications.