Evidence of Ferroelectricity in an Antiferromagnetic Vanadium Trichloride Monolayer

Evidence of Ferroelectricity in an Antiferromagnetic Vanadium Trichloride Monolayer

Science Advances, in press (2025); ArXiv:2404.13513 (2024)

Jinghao Deng#, Deping Guo#, Yao Wen, Shuangzan Lu, Zhengbo Cheng, Zemin Pan, Tao Jian, Yusong Bai, Hui Zhang, Wei Ji*, Jun He*, Chendong Zhang*

Multiferroicity allows magnetism to be controlled using electric fields or vice versa, which has gained tremendous interest in both fundamental research and device applications. A reduced dimensionality of multiferroic materials is highly desired for device miniaturization, but the coexistence of ferroelectricity and magnetism at the two-dimensional limit is still debated. Here, we used a NbSe2 substrate to break both the C3 rotational and inversion symmetries in monolayer VCl3 and thus introduced exceptional in-plane ferroelectricity into a two dimensional magnet. Scanning tunnelling spectroscopy directly visualized ferroelectric domains and manipulated their domain boundaries in monolayer VCl3, where coexisting antiferromagnetic order with canted magnetic moments was verified by vibrating sample magnetometer measurements. Our density functional theory calculations highlight the crucial role that highly directional interfacial Cl–Se interactions play in breaking the symmetries and thus in introducing in-plane ferroelectricity, which was further verified by examining an ML-VCl3/graphene sample. Our work demonstrates an approach to manipulate the ferroelectric states in monolayered magnets through van der Waals interfacial interactions.

Buffer layer stabilized single-unit cell ferroelectric Bi2TeO5

Buffer layer stabilized single-unit cell ferroelectric Bi2TeO5

Yunfei Li#, Alei Li#, Cong Wang#, Mengjiao Han*, Juntong Zhu, Yunlei Zhong, Pin Zhao, Ge Song, Shun Wang, Zongjie Shen, Lin Wang, Hui Zhang, Wu Zhou, Lu You, Wei Ji*, Junhao Lin*, Lixing Kang*

Miniaturizing van der Waals (vdW) ferroelectric materials to atomic scales is essential for modern devices like nonvolatile memory and sensors. To unlock their full potential, their growth mechanisms, interface effects, and stabilization are preferably investigated, particularly for ultrathin 2D nanosheets with single-unit cell thickness. This study focuses on Bi2TeO5 (BTO) and utilizes precise control over growth kinetics at the nucleation temperature to create specific interfacial reconfiguration layers. Ultrathin BTO nanosheets with planar ferroelectricity at a single-unit cell thickness are successfully grown. Atomic-scale characterization reveals a disordered distribution of elements in the interfacial layer, which buffers strain from lattice mismatch. The theoretical calculations support these observations. Furthermore, this strategy also can be extended to the growth of a variety of 2D ternary oxide nanosheets. This work contributes to a better understanding of growth and stability mechanisms in 2D ultrathin nanosheets.

Interlayer coupling rotatable magnetic easy-axis in MnSe2 mono- and bi-layers

Interlayer coupling rotatable magnetic easy-axis in MnSe2 mono- and bi-layers

Zhongqin Zhang, Cong Wang†,*, PengJie Guo, Linwei Zhou, Yuhao Pan, Zhixin Hu*, and Wei Ji*

Interlayer coupling plays a critical role in tuning the electronic structures and magnetic ground states of two-dimensional materials, influenced by the number of layers, interlayer distance, and stacking order. However, its effect on the orientation of the magnetic easy axis remains underexplored. In this study, we demonstrate that interlayer coupling can significantly alter the magnetic easy-axis orientation, as shown by the magnetic easy-axis of monolayer 1T-MnSe2 tilting 33° from the z-axis, while aligning with the z-axis in the bilayer. This change results from variations in orbital occupations near the Fermi level, particularly involving nonmetallic Se atoms. Contrary to the traditional focus on magnetic metal atoms, our findings reveal that Se orbitals play a key role in influencing the easy-axis orientation and topological Chern numbers. Furthermore, we show that the occupation of Se p-orbitals, and consequently the magnetic anisotropy, can be modulated by factors such as stacking order, charge doping, and external strain. Our results highlight the pivotal role of interlayer coupling in tuning the magnetic properties of layered materials, with important implications for spintronic applications.

Stacking selected polarization switching and phase transition in vdW ferroelectric α-In2Se3 junction devices

Stacking selected polarization switching and phase transition in vdW ferroelectric α-In2Se3 junction devices

Yuyang Wu#, Tianjiao Zhang#, Deping Guo#, Bicheng Li, Ke Pei, Wenbin You, Yiqian Du, Wanchen Xing, Yuxiang Lai, Wei Ji*, Yuda Zhao* & Renchao Che*

The structure and dynamics of ferroelectric domain walls are essential for polarization switching in ferroelectrics, which remains relatively unexplored in two-dimensional ferroelectric α-In2Se3. Interlayer interactions engineering via selecting the stacking order in two-dimensional materials allows modulation of ferroelectric properties. Here, we report stacking-dependent ferroelectric domain walls in 2H and 3R stacked α-In2Se3, elucidating the resistance switching mechanism in ferroelectric semiconductor-metal junction devices. In 3R α-In2Se3, the in-plane movement of out-of-plane ferroelectric domain walls yield a large hysteresis window. Conversely, 2H α-In2Se3 devices favor in-plane domain walls and out-of-plane domain wall motion, producing a small hysteresis window. High electric fields induce a ferro-paraelectric phase transition of In2Se3, where 3R In2Se3 reaches the transition through intralayer atomic gliding, while 2H In2Se3 undergoes a complex process comprising intralayer bond dissociation and interlayer bond reconstruction. Our findings demonstrate tunable ferroelectric properties via stacking configurations, offering an expanded dimension for material engineering in ferroelectric devices.

Magnetically-controlled non-volatile charging states in bilayer graphene-CrOCl heterostructures

Magnetically-controlled non-volatile charging states in bilayer graphene-CrOCl heterostructures

Shimin Cao#, Runjie Zheng#, Cong Wang#, Ning Ma, Mantang Chen, Yuanjun Song, Ya Feng, Tingting Hao, Yu Zhang, Kenji Watanabe, Takashi Taniguchi, X.C. Xie, Wei Ji*, Yu Ye*, Zheng Han*, Jian-Hao Chen*

Charge carrier densities in electronic heterostructures are typically responsive to external electric fields or chemical doping but rarely to their magnetization history. Here, we demonstrate that magnetization acts as a non-volatile control parameter for the density of states in bilayer graphene (BLG) interfaced with the antiferromagnetic insulator chromium oxychloride (COC). Using capacitance measurements, we observe a hysteretic behavior in the density of states of BLG on a COC substrate in response to an external magnetic field, which is unrelated to the history of electrostatic gating. First-principles calculations revealed that such hysteresis arises from the magnetic-field-controlled charge transfer between BLG and COC during the antiferromagnetic (AFM) to ferrimagnetic-like (FiM) state phase transition of COC. Our work demonstrates that interfacial charging states can be effectively controlled magnetically, and it also shows that capacitance measurement is a suitable technique for detecting subtle changes not detectable via conventional resistivity measurements. These findings broaden the scope of proximity effects and open new possibilities for nanoelectronics applications.