Chirality locking charge density waves in a chiral crystal

Chirality locking charge density waves in a chiral crystal

Nature Communications 13, 2914 (2022)

Geng Li#, Haitao Yang#, Peijie Jiang#, Cong Wang#, Qiuzhen Cheng, Shangjie Tian, Guangyuan Han, Chengmin Shen, Xiao Lin, Hechang Lei*, Wei Ji*, Ziqiang Wang* & Hong-Jun Gao*

Abstract

In Weyl semimetals, charge density wave (CDW) order can spontaneously break the chiral symmetry, gap out the Weyl nodes, and drive the material into the axion insulating phase. Investigations have however been limited since CDWs are rarely seen in Weyl semimetals. Here, using scanning tunneling microscopy/spectroscopy (STM/S), we report the discovery of a novel unidirectional CDW order on the (001) surface of chiral crystal CoSi – a unique Weyl semimetal with unconventional chiral fermions. The CDW is incommensurate with both lattice momentum and crystalline symmetry directions, and exhibits an intra unit cell π phase shift in the layer stacking direction. The tunneling spectrum shows a particle-hole asymmetric V-shaped energy gap around the Fermi level that modulates spatially with the CDW wave vector. Combined with first-principle calculations, we identify that the CDW is locked to the crystal chirality and is related by a mirror reflection between the two enantiomers of the chiral crystal. Our findings reveal a novel correlated topological quantum state in chiral CoSi crystals and raise the potential for exploring the unprecedented physical behaviors of unconventional chiral fermions.

Layer-dependent interlayer antiferromagnetic spin reorientation in air-stable semiconductor CrSBr

Layer-dependent interlayer antiferromagnetic spin reorientation in air-stable semiconductor CrSBr

ACS Nano 16, 11876–11883 (2022)

Chen Ye, Cong Wang, Qiong Wu, Sheng Liu, Jiayuan Zhou, Guopeng Wang, Aljoscha Söll, Zdenek Sofer, Ming Yue, Xue Liu, Mingliang Tian, Qihua Xiong, Wei Ji & Xiao Renshaw Wang

Abstract

Magnetic van der Waals (vdW) materials possess versatile spin configurations stabilized in reduced dimensions. One magnetic order is the interlayer antiferromagnetism in A-type vdW antiferromagnet, which may be effectively modified by the magnetic field, stacking order, and thickness scaling. However, atomically revealing the interlayer spin orientation in the vdW antiferromagnet is highly challenging, because most of the material candidates exhibit an insulating ground state or instability in ambient conditions. Here, we report the layer-dependent interlayer antiferromagnetic spin reorientation in air-stable semiconductor CrSBr using magnetotransport characterization and first-principles calculations. We reveal an odd–even layer effect of interlayer spin reorientation, which originates from the competitions among interlayer exchange, magnetic anisotropy energy, and extra Zeeman energy of uncompensated magnetization. Furthermore, we quantitatively constructed the layer-dependent magnetic phase diagram with the help of a linear-chain model. Our work uncovers the layer-dependent interlayer antiferromagnetic spin reorientation engineered by magnetic field in the air-stable semiconductor. (DOI: 10.1021/acsnano.2c01151)

Visualization of Strain-Engineered Nanopattern in Center-Confined Mesoscopic WS2 Monolayer Flakes

Visualization of Strain-Engineered Nanopattern in Center-Confined Mesoscopic WS2 Monolayer Flakes

J. Phys. Chem. C 126, 7184–7192 (2022)

Rui Xu, Yingzhuo Lun, Lan Meng, Fei Pang, Yuhao Pan, Zhiyue Zheng, Le Lei, Sabir Hussain, Yanjun Li, Yasuhiro Sugawara, Jiawang Hong, Wei Ji & Zhihai Cheng*

Abstract

Strain engineering plays a crucial role in controlling the physical properties of two-dimensional (2D) materials. However, the mechanical behavior of stressed 2D crystals has not been fully understood. In this study, the fracture behavior and accompanying properties of a strained single-crystal monolayer WS2 of submicron scale were investigated using a theoretical–experimental joint study. After thermal strain, the WS2 monolayer was split into different forms by several cracks, with the cause of the crack formation being studied using finite element analysis (FEA). The cracks were initiated from the vertex of the nucleation center, extending along the stronger von Mises stress isolines and terminating at the edges of the monolayers. Within the separate sections, ripple regions were observed, forming several typical nanopatterns. The band gap, frictional, viscosity, and elasticity characteristics of the different strain regions were also investigated. The nanopattern should enable flexibility in the design of more sophisticated devices based on 2D materials.

Measurement of electronic structure in van der Waals ferromagnet Fe5–xGeTe2

Measurement of electronic structure in van der Waals ferromagnet Fe5–xGeTe2

Chinese Physics B 31(5), 057404 (2022)

Kui Huang (黄逵), Zhenxian Li (李政贤), Deping Guo (郭的坪), Haifeng Yang (杨海峰), Yiwei Li (李一苇), Aiji Liang (梁爱基), Fan Wu (吴凡), Lixuan Xu (徐丽璇), Lexian Yang (杨乐仙), Wei Ji (季威), Yanfeng Guo (郭艳峰), Yulin Chen (陈宇林)* and Zhongkai Liu (柳仲楷)*

Abstract

As a van der Waals ferromagnet with high Curie temperature, Fe5–xGeTe2 has attracted tremendous interests recently. Here, using high-resolution angle-resolved photoemission spectroscopy (ARPES), we systematically investigated the electronic structure of Fe5–xGeTe2 crystals and its temperature evolution. Our ARPES measurement reveals two types of band structures from two different terminations with slight kz evolution. Interestingly, across the ferromagnetic transition, we observed the merging of two split bands above the Curie temperature, suggesting the band splitting due to the exchange interaction within the itinerant Stoner model. Our results provide important insights into the electronic and magnetic properties of Fe5–xGeTe2 and the understanding of magnetism in a two-dimensional ferromagnetic system.

DOI:10.1088/1674-1056/ac5c3c

Sub-Angstrom Imaging of Nondegenerate Kekulé Structures in a Two-Dimensional Halogen-Bonded Supramolecular Network

Sub-Angstrom Imaging of Nondegenerate Kekulé Structures in a Two-Dimensional Halogen-Bonded Supramolecular Network

J. Phys. Chem. C 126, 4241–4247(2022)

Haohan Li, Mykola Telychko, Linwei Zhou, Zhi Chen, Xinnan Peng, Wei Ji, Jiong Lu & Kian Ping Loh

Abstract

Formation of a two-dimensional (2D) supramolecular self-assembly and a 2D organometallic framework derived from a brominated N-heterocyclic aromatic molecule (4Br-TAP) on Au(111) and Ag(111) substrates were studied using chemical bond-resolved scanning tunneling microscopy (STM) and noncontact atomic force microscopy (ncAFM) techniques combined with density functional theory (DFT) calculations. The 4Br-TAP-based 2D molecular framework on Au(111) is constructed by diverse Br···Br and Br···N noncovalent interactions, which are resolved with sub-angstrom resolution using combined STM and ncAFM imaging with a CO-functionalized tip and further quantified using DFT calculations. The distortion of molecular backbones, triggered by a highly nonuniform bonding environment, leads to lifting of the degeneracy of the intrinsic resonance structures of tetraazapyrene (TAP) moieties and emergence of two chiral Kekulé-like structures. In contrast, debromination of 4Br-TAP on Ag(111) leads to the formation of an ordered 2D organometallic framework linked by C–Ag–C bonds. Our results underpin the tremendous potential of the tip-functionalized ncAFM technique for microscopic identification of a complex interplay of intermolecular interactions and their associated impact on the molecular resonance structures.