Localized spin-orbit polaron in magnetic Weyl semimetal Co3Sn2S2

Localized spin-orbit polaron in magnetic Weyl semimetal Co3Sn2S2

Nature Communications 11, 5613 (2020)

Ruisong Ma, Qi Wang, Qiangwei Yin, Hechang Lei, Wei Ji, Shixuan Du, Haitao Yang, Wenhong Wang, Chengmin Shen, Xiao Lin, Enke Liu, Baogen Shen, Ziqiang Wang, Hong-Jun Gao

Abstract

The kagome lattice Co3Sn2S2 exhibits the quintessential topological phenomena of a magnetic Weyl semimetal such as the chiral anomaly and Fermi-arc surface states. Probing its magnetic properties is crucial for understanding this correlated topological state. Here, using spin-polarized scanning tunneling microscopy/spectroscopy (STM/S) and non-contact atomic force microscopy (nc-AFM) combined with first-principle calculations, we report the discovery of localized spin-orbit polarons (SOPs) with three-fold rotation symmetry nucleated around single S-vacancies in Co3Sn2S2. The SOPs carry a magnetic moment and a large diamagnetic orbital magnetization of a possible topological origin associated relating to the diamagnetic circulating current around the S-vacancy. Appreciable magneto-elastic coupling of the SOP is detected by nc-AFM and STM. Our findings suggest that the SOPs can enhance magnetism and more robust time-reversal-symmetry-breaking topological phenomena. Controlled engineering of the SOPs may pave the way toward practical applications in functional quantum devices.

Van der Waals epitaxial growth of air-stable CrSe2 nanosheets with thickness-tunable magnetic order

Van der Waals epitaxial growth of air-stable CrSe2 nanosheets with thickness-tunable magnetic order

Nature Materials 20, 818–825 (2021)

Bo Li#, Zhong Wan#, Cong Wang#, Peng Chen#, Bevin Huang, Xing Cheng, Qi Qian, Jia Li, Zhengwei Zhang, Guangzhuang Sun, Bei Zhao, Huifang Ma, Ruixia Wu, Zhongming Wei, Yuan Liu, Lei Liao, Yu Ye, Yu Huang, Xiaodong Xu, Xidong Duan*, Wei Ji* & Xiangfeng Duan*

Abstract

The discovery of intrinsic ferromagnetism in ultrathin two-dimensional van der Waals crystals opens up exciting prospects for exploring magnetism in the ultimate two-dimensional limit. Here, we show that environmentally stable CrSe2 nanosheets can be readily grown on a dangling-bond-free WSe2 substrate with systematically tunable thickness down to the monolayer limit. These CrSe2/WSe2 heterostructures display high-quality van der Waals interfaces with well-resolved moiré superlattices and ferromagnetic behaviour. We find no apparent change in surface roughness or magnetic properties after months of exposure in air. Our calculations suggest that charge transfer from the WSe2 substrate and interlayer coupling within CrSe2 play a critical role in the magnetic order in few-layer CrSe2 nanosheets. The highly controllable growth of environmentally stable CrSe2 nanosheets with tunable thickness defines a robust two-dimensional magnet for fundamental studies and potential applications in magnetoelectronic and spintronic devices.

A Gd@C82 single-molecule electret

A Gd@C82 single-molecule electret

Nat. Nanotechnol. 15, 1019–1024 (2020)

Kangkang Zhang, Cong Wang, Minhao Zhang, Zhanbin Bai, Fang-Fang Xie, Yuan-Zhi Tan, Yilv Guo, Kuo-Juei Hu, Lu Cao, Shuai Zhang, Xuecou Tu, Danfeng Pan, Lin Kang, Jian Chen, Peiheng Wu, Xuefeng Wang, Jinlan Wang, Junming Liu, You Song, Guanghou Wang, Fengqi Song, Wei Ji, Su-Yuan Xie, Su-Fei Shi, Mark A Reed & Baigeng Wang

Abstract

Electrets are dielectric materials that have a quasi-permanent dipole polarization. A single-molecule electret is a long-sought-after nanoscale component because it can lead to miniaturized non-volatile memory storage devices. The signature of a single-molecule electret is the switching between two electric dipole states by an external electric field. The existence of these electrets has remained controversial because of the poor electric dipole stability in single molecules. Here we report the observation of a gate-controlled switching between two electronic states in Gd@C82. The encapsulated Gd atom forms a charged centre that sets up two single-electron transport channels. A gate voltage of ±11 V (corresponding to a coercive field of ~50 mV Å–1) switches the system between the two transport channels with a ferroelectricity-like hysteresis loop. Using density functional theory, we assign the two states to two different permanent electrical dipole orientations generated from the Gd atom being trapped at two different sites inside the C82 cage. The two dipole states are separated by a transition energy barrier of 11 meV. The conductance switching is then attributed to the electric-field-driven reorientation of the individual dipole, as the coercive field provides the necessary energy to overcome the transition barrier.

Phase-controllable growth of ultrathin 2D magnetic FeTe crystals

Phase-controllable growth of ultrathin 2D magnetic FeTe crystals

Nature Communications 11: 3729 (2020)

Lixing Kang#, Chen Ye#, Xiaoxu Zhao#, Xieyu Zhou#, Junxiong Hu, Qiao Li, Dan Liu, Chandreyee Manas Das, Jiefu Yang, Dianyi Hu, Jieqiong Chen, Xun Cao, Yong Zhang, Manzhang Xu, Jun Di, Dan Tian, Pin Song, Govindan Kutty, Qingsheng Zeng, Qundong Fu, Ya Deng, Jiadong Zhou, Ariando Ariando, Feng Miao, Guo Hong, Yizhong Huang, Stephen J. Pennycook, Ken-Tye Yong*, Wei Ji*, Xiao Renshaw Wang* & Zheng Liu*

Abstract

Two-dimensional (2D) magnets with intrinsic ferromagnetic/antiferromagnetic (FM/AFM) ordering are highly desirable for future spintronic devices. However, the direct growth of their crystals is in its infancy. Here we report a chemical vapor deposition approach to controllably grow layered tetragonal and non-layered hexagonal FeTe nanoplates with their thicknesses down to 3.6 and 2.8 nm, respectively. Moreover, transport measurements reveal these obtained FeTe nanoflakes show a thickness-dependent magnetic transition. Antiferromagnetic tetragonal FeTe with the Néel temperature (TN) gradually decreases from 70 to 45 K as the thickness declines from 32 to 5 nm. And ferromagnetic hexagonal FeTe is accompanied by a drop of the Curie temperature (TC) from 220 K (30 nm) to 170 K (4 nm). Theoretical calculations indicate that the ferromagnetic order in hexagonal FeTe is originated from its concomitant lattice distortion and Stoner instability. This study highlights its potential applications in future spintronic devices.

Universal mechanical exfoliation of large-area 2D crystals

Universal mechanical exfoliation of large-area 2D crystals

Nature Communications 11: 2453 (2020)

Yuan Huang#, Yu-Hao Pan#, Rong Yang#, Li-Hong Bao, Lei Meng, Hai-Lan Luo, Yong-Qing Cai, Guo-Dong Liu, Wen-Juan Zhao, Zhang Zhou, Liang-Mei Wu, Zhi-Li Zhu, Ming Huang, Li-Wei Liu, Lei Liu, Peng Cheng, Ke-Hui Wu, Shi-Bing Tian, Chang-Zhi Gu, You-Guo Shi, Yan-Feng Guo, Zhi Gang Cheng, Jiang-Ping Hu, Lin Zhao, Guan-Hua Yang, Eli Sutter, Peter Sutter*, Ye-Liang Wang, Wei Ji*, Xing-Jiang Zhou* & Hong-Jun Gao*

Abstract:

Two-dimensional materials provide extraordinary opportunities for exploring phenomena arising in atomically thin crystals. Beginning with the first isolation of graphene, mechanical exfoliation has been a key to provide high-quality two-dimensional materials, but despite improvements it is still limited in yield, lateral size and contamination. Here we introduce a contamination-free, one-step and universal Au-assisted mechanical exfoliation method and demonstrate its effectiveness by isolating 40 types of single-crystalline monolayers, including elemental two-dimensional crystals, metal-dichalcogenides, magnets and superconductors. Most of them are of millimeter-size and high-quality, as shown by transfer-free measurements of electron microscopy, photo spectroscopies and electrical transport. Large suspended two-dimensional crystals and heterojunctions were also prepared with high-yield. Enhanced adhesion between the crystals and the substrates enables such efficient exfoliation, for which we identify a gold-assisted exfoliation method that underpins a universal route for producing large-area monolayers and thus supports studies of fundamental properties and potential application of two-dimensional materials.