Band alignment and interlayer hybridization in monolayer organic/WSe2 heterojunction

Band alignment and interlayer hybridization in monolayer organic/WSe2 heterojunction

Nano Research 15, 1276–1281 (2022)

Yanping Guo, Linlu Wu, Jinghao Deng, Linwei Zhou, Wei Jiang, Shuangzan Lu, Da Huo, Jiamin Ji, Yusong Bai, Xiaoyu Lin, Shunping Zhang, Hongxing Xu, Wei Ji & Chendong Zhang

Abstract

Semiconducting heterojunctions (HJs), comprised of atomically thin transition metal dichalcogenides (TMDs), have shown great potentials in electronic and optoelectronic applications. Organic/TMD hybrid bilayers hold enhanced pumping efficiency of interfacial excitons, tunable electronic structures and optical properties, and other superior advantages to these inorganic HJs. Here, we report a direct probe of the interfacial electronic structures of a crystalline monolayer (ML) perylene-3,4,9,10-tetracarboxylic-dianhydride (PTCDA)/ML-WSe2 HJ using scanning tunneling microscopy, photoluminescence, and first-principle calculations. Strong PTCDA/WSe2 interfacial interactions lead to appreciable hybridization of the WSe2 conduction band with PTCDA unoccupied states, accompanying with a significant amount of PTCDA-to-WSe2 charge transfer (by 0.06 e/PTCDA). A type-II band alignment was directly determined with a valence band offset of ∼ 1.69 eV, and an apparent conduction band offset of ∼ 1.57 eV. Moreover, we found that the local stacking geometry at the HJ interface differentiates the hybridized interfacial states.

An efficient route to prepare suspended monolayer for feasible optical and electronic characterizations of two-dimensional materials

An efficient route to prepare suspended monolayer for feasible optical and electronic characterizations of two-dimensional materials

InfoMat 4:e12274 (2022)

Yuan Huang, Yun-Kun Wang, Xin-Yu Huang, Guan-Hua Zhang, Xu Han, Yang Yang, Yunan Gao, Lei Meng, Yushu Wang, Guang-Zhou Geng, Li-Wei Liu, Lin Zhao, Zhi-Hai Cheng, Xin-Feng Liu, Ze-Feng Ren, Hui-Xia Yang, Yufeng Hao, Hong-Jun Gao, Xing-Jiang Zhou, Wei Ji & Ye-Liang Wang

Abstract

Two-dimensional (2D) materials are highly sensitive to substrates, interfaces, and the surrounding environments. Suspended 2D materials are free from substrate-induced effects, thus an ideal approach to study their intrinsic properties. However, it is very challenging to prepare large-area suspended 2D materials with high efficiency. Here we report a universal method, based on pretreatments of densely patterned hole array substrates with either oxygen-plasma or gold film deposition, to prepare large-area suspended mono- and few-layer 2D materials. Multiple structural, optical, and electrical characterization tools were used to fully evaluate the improved performance of various suspended 2D layers. Some of these observations reported in this study are: (1) Observation of a new Raman low frequency mode for the suspended MoS2; (2) Significantly stronger photoluminescence (PL) and second harmonic generation (SHG) signals of suspended WSe2, which enables the study of new optical transition processes; (3) The low energy electron diffraction pattern on suspended MoS2 also exhibits much sharper spots than that on the supported area; and (4) The mobility of suspended graphene device approaches 300 000 cm2 V−1 s−1, which is desirable to explore the intrinsic properties of graphene. This work provides an innovative and efficient route for fabricating suspended 2D materials, and we expect that it can be broadly used for studying intrinsic properties of 2D materials and in applications of hybrid active nanophotonic and electronic devices.

Mass transport induced structural evolution and healing of sulfur vacancy lines and Mo chain in monolayer MoS2

Mass transport induced structural evolution and healing of sulfur vacancy lines and Mo chain in monolayer MoS2

Rare Metals 41, 333–341 (2022)

Xiao-Wei Wang, Lin-Fang Hou, Wei Huang, Xi-Biao Ren, Wei Ji & Chuan-Hong Jin

Abstract

Defects play vital roles in tailoring structures and properties of materials including the atomically thin two-dimensional (2D) materials, and increasing demands are requested to find effective ways to realize the defect engineering, i.e., tuning the defects and thus the materials’ structure–property in a well-controlled way. Herein, we propose a novel method to tune the structures and configurations of one-dimensional (1D) line defects in monolayer MoS2 via mass transport induced structural transformation. By using atomic-resolved annular dark-field scanning transmission electron microscopy (ADF-STEM), we demonstrate in situ that sulfur vacancy line defect can be healed locally into defect-free MoS2 lattice via the desorption of Mo atoms from vacancy lines and adsorption into a moving Mo cluster. Furthermore, directional transport of Mo atoms (or Mo cluster) along the sulfur vacancy lines can induce the formation of Mo chains. Such a mass transport induced defect tuning provides more operational routes for the rational defect designing and property tuning in MoS2 as well as other related 2D materials.

Light helicity detector based on 2D magnetic semiconductor CrI3

Light helicity detector based on 2D magnetic semiconductor CrI3

Nature Communications 12: 6874 (2021)

Xing Cheng, Zhixuan Cheng, Cong Wang, Minglai Li, Pingfan Gu, Shiqi Yang, Yanping Li, Kenji Watanabe, Takashi Taniguchi, Wei Ji & Lun Dai

Two-dimensional magnetic semiconductors provide a platform for studying physical phenomena at atomically thin limit, and promise magneto-optoelectronic devices application. Here, we report light helicity detectors based on graphene-CrI3-graphene vdW heterostructures. We investigate the circularly polarized light excited current and reflective magnetic circular dichroism (RMCD) under various magnetic fields in both monolayer and multilayer CrI3 devices. The devices exhibit clear helicity-selective photoresponse behavior determined by the magnetic state of CrI3. We also find abnormal negative photocurrents at higher bias in both monolayer and multilayer CrI3. A possible explanation is proposed for this phenomenon. Our work reveals the interplay between magnetic and optoelectronic properties in CrI3 and paves the way to developing spin-optoelectronic devices.

Giant anisotropic photonics in the 1D van der Waals semiconductor fibrous red phosphorus

Giant anisotropic photonics in the 1D van der Waals semiconductor fibrous red phosphorus

Nature Communications 12: 4822 (2021) 

Luojun Du*,#, Yanchong Zhao#, Linlu Wu#, Xuerong Hu, Lide Yao, Yadong Wang, Xueyin Bai, Yunyun Dai, Jingsi Qiao, Md Gius Uddin, Xiaomei Li, Jouko Lahtinen, Xuedong Bai, Guangyu Zhang, Wei Ji* & Zhipei Sun*

Abstract

A confined electronic system can host a wide variety of fascinating electronic, magnetic, valleytronic and photonic phenomena due to its reduced symmetry and quantum confinement effect. For the recently emerging one-dimensional van der Waals (1D vdW) materials with electrons confined in 1D sub-units, an enormous variety of intriguing physical properties and functionalities can be expected. Here, we demonstrate the coexistence of giant linear/nonlinear optical anisotropy and high emission yield in fibrous red phosphorus (FRP), an exotic 1D vdW semiconductor with quasi-flat bands and a sizeable bandgap in the visible spectral range. The degree of photoluminescence (third-order nonlinear) anisotropy can reach 90% (86%), comparable to the best performance achieved so far. Meanwhile, the photoluminescence (third-harmonic generation) intensity in 1D vdW FRP is strong, with quantum efficiency (third-order susceptibility) four (three) times larger than that in the most well-known 2D vdW materials (e.g., MoS2). The concurrent realization of large linear/nonlinear optical anisotropy and emission intensity in 1D vdW FRP paves the way towards transforming the landscape of technological innovations in photonics and optoelectronics.