Multi-state data storage in a two-dimensional stripy antiferromagnet implemented by magnetoelectric effect

Multi-state data storage in a two-dimensional stripy antiferromagnet implemented by magnetoelectric effect

Nature Communications 14, 3221 (2023) 

Pingfan Gu, Cong Wang, Dan Su, Zehao Dong, Qiuyuan Wang, Zheng Han, Kenji Watanabe, Takashi Taniguchi, Wei Ji, Young Sun & Yu Ye

A promising approach to the next generation of low-power, functional, and energy-efficient electronics relies on novel materials with coupled magnetic and electric degrees of freedom. In particular, stripy antiferromagnets often exhibit broken crystal and magnetic symmetries, which may bring about the magnetoelectric (ME) effect and enable the manipulation of intriguing properties and functionalities by electrical means. The demand for expanding the boundaries of data storage and processing technologies has led to the development of spintronics toward two-dimensional (2D) platforms. This work reports the ME effect in the 2D stripy antiferromagnetic insulator CrOCl down to a single layer. By measuring the tunneling resistance of CrOCl on the parameter space of temperature, magnetic field, and applied voltage, we verified the ME coupling down to the 2D limit and probed its mechanism. Utilizing the multi-stable states and ME coupling at magnetic phase transitions, we realize multi-state data storage in the tunneling devices. Our work not only advances the fundamental understanding of spin-charge coupling, but also demonstrates the great potential of 2D antiferromagnetic materials to deliver devices and circuits beyond the traditional binary operations.

DOI: 10.1038/s41467-023-39004-4

六名成员参加“第四届团簇科学与原子制造学术研讨会”

六名成员参加“第四届团簇科学与原子制造学术研讨会”

2023年4月21-23日,中国人民大学物理学院季威教授携刘南舒博士后以及郭的坪、伍琳璐、官雨柔、戴佳琦等四名博士生赴西安参加了第四届“团簇科学与原子制造学术研讨会”。季威教授受会议主办方邀请作了题为“低维超原子晶体中的特殊电子态”的报告。

季威教授在作报告

刘南舒、郭的坪、伍琳璐、官雨柔、戴佳琦等成员分别在会议中展示了题为 “Magnetic coupling in superatom Mn@Sn12 assembly” (Liu), “Controllable dimensionality conversion between 1D and 2D CrCl3 magnetic nanostructures” (Guo), “Interweaving Polar Charge Orders in a Layered Metallic Superatomic Crystal” (Wu), “Magnetization-distance oscillation induced by competing interactions in Cr doped Au6Te12Se8 superatomic assembly” (Guan) 和“One-Step Exfoliation Method for Plasmonic Activation of Large-Area 2D Crystals” (Dai) 的墙报,均获得会议主办方颁发的优秀墙报奖状。

(左图)不愿透露样貌的郭师姐和她的墙报;(右图)伍琳璐和戴佳琦在她们的墙报前合影

第四届“团簇科学与原子制造学术研讨会”由西安交通大学物理学院物质非平衡合成与调控教育部重点实验室、南京大学物理学院和大连理工大学三束材料改性教育部重点实验室联合主办;西安交通大学激光与粒子束科学技术研究所承办。会议主题是交流近年来原子与分子及团簇物理、原子制造和纳米科技方面的研究进展,探讨本领域的未来发展方向。季威研究组成员为参与本次会议做了充分准备,并期待下次参会的科研成果能有在团簇及原子制造领域有新的突破。

Controllable CVD-Growth of 2D Cr5Te8 Nanosheets withThickness-Dependent Magnetic Domains

Controllable CVD-Growth of 2D Cr5Te8 Nanosheets withThickness-Dependent Magnetic Domains

ACS Applied Materials & Interfaces 15, 26148 (2023)

Hanxiang Wu, Jianfeng Guo, Suonan Zhaxi, Hua Xu, Shuo Mi, Le Wang, Shanshan Chen, Rui Xu, Wei Ji, Fei Pang and Zhihai Cheng

As a unique 2D magnetic material with self-intercalated structure, Cr5Te8 exhibits many intriguing magnetic properties. While its ferromagnetism of Cr5Te8 has been previously reported, the research on its magnetic domain remains unexplored. Herein, we have successfully fabricated 2D Cr5Te8 nanosheets with controlled thickness and lateral size by chemical vapor deposition (CVD). Then magnetic property measurement system revealed Cr5Te8 nanosheets exhibiting intense out-of-plane ferromagnetism with a Curie temperature (TC) of 176 K. Significantly, we reported for the first time two magnetic domains: magnetic bubbles and thickness-dependent maze-like magnetic domains in our Cr5Te8 nanosheets by cryogenic magnetic force microscopy (MFM). The domain width of the maze-like magnetic domains increases rapidly with decreasing sample thickness, meanwhile domain contrast decreases. This indicates the dominate role of ferromagnetism shifts from dipolar interactions to magnetic anisotropy. Our research not only establishes a pathway for the controllable growth of 2D magnetic materials, but also points towards novel avenues for regulating magnetic phases and methodically tuning domain characteristics.

DOI: 10.1021/acsami.3c02446

Hysteretic electronic phase transitions in correlated charge density wave state of 1T-TaS2

Hysteretic electronic phase transitions in correlated charge density wave state of 1T-TaS2

Physical Review B 107, 195401 (2023)

Yanyan Geng, Le Lei, Haoyu Dong, Jianfeng Guo, Shuo Mi, Yan Li, Li Huang, Fei Pang, Rui Xu, Weichang Zhou, Zheng Liu, Wei Ji, and Zhihai Cheng

The layered transition metal dichalcogenide 1T−TaS2 has evoked great interest owing to its particularly rich electronic phase diagram including different charge density wave (CDW) phases. However, few studies have focused on its hysteretic electronic phase transitions based on the in-depth discussion of the delicate interplay among temperature-dependent electronic interactions. Here, we report a sequence of spatial electronic phase transitions in the hysteresis temperature range (160–230 K) of 1T−TaS2 via variable-temperature scanning tunneling microscopy. Several emergent electronic states are investigated at multiscale during the commensurate CDW–triclinic CDW (CCDW-TCDW) phase transitions: a spotty-CDW state above ∼160K, a network-CDW (NCDW) state above ∼180K during the warmup process, a belt-TCDW state below ∼230K, a NCDW state below ∼200K, and finally a mosaic-CDW state below ∼160K during cooldown from the TCDW phase. These emergent electronic states are associated with the delicate temperature-dependent competition and/or cooperation of stacking-dependent interlayer interactions, intralayer electron-electron correlations, and electron-phonon (e−ph) coupling of 1T−TaS2. Our results not only provide insight to understand the hysteretic electronic phase transitions in the correlated CDW state, but also pave a way to realize more exotic quantum states by accurately and effectively tuning various interior interactions in correlated materials.

DOI:10.1103/PhysRevB.107.195401

Two-Dimensional Magnetic Semiconducting Heterostructures of Single-Layer CrI3–CrI2

Two-Dimensional Magnetic Semiconducting Heterostructures of Single-Layer CrI3–CrI2

ACS Appl. Mater. Interfaces 15, 19574–19581 (2023)

Peigen Li, Nanshu Liu, Jihai Zhang, Shenwei Chen, Xuhan Zhou, Donghui Guo, Cong Wang, Wei Ji, and Dingyong Zhong

Single-layer heterostructures of magnetic materials are unique platforms for studying spin-related phenomena in two dimensions (2D) and have promising applications in spintronics and magnonics. Here, we report the fabrication of 2D magnetic lateral heterostructures consisting of single-layer chromium triiodide (CrI3) and chromium diiodide (CrI2). By carefully adjusting the abundance of iodine based on molecular beam epitaxy, single-layer CrI3–CrI2 heterostructures were grown on Au(111) surfaces with nearly atomic-level seamless boundaries. Two distinct types of interfaces, i.e., zigzag and armchair interfaces, have been identified by means of scanning tunneling microscopy. Our scanning tunneling spectroscopy study combined with density functional theory calculations indicates the existence of spin-polarized ground states below and above the Fermi energy localized at the boundary. Both the armchair and zigzag interfaces exhibit semiconducting nanowire behaviors with different spatial distributions of density of states. Our work presents a novel low-dimensional magnetic system for studying spin-related physics with reduced dimensions and designing advanced spintronic devices.

DOI: 10.1021/acsami.2c22494