Recent research advances in two-dimensional magnetic materials

Recent research advances in two-dimensional magnetic materials

Acta Phys. Sinica 71, 127504 (2022)

Liu, Nan-Shu; Wang, Cong; Ji, Wei

Two-dimensional (2D) magnetic materials with magnetic anisotropy can form magnetic order at finitetemperature and monolayer limit. Their macroscopic magnetism is closely related to the number of layers andstacking forms, and their magnetic exchange coupling can be regulated by a variety of external fields. Thesenovel properties endow 2D magnetic materials with rich physical connotation and potential application value,thus having attracted extensive attention. In this paper, the recent advances in the experiments and theoreticalcalculations of 2D magnets are reviewed. Firstly, the common magnetic exchange mechanisms in several 2Dmagnetic materials are introduced. Then, the geometric and electronic structures of some 2D magnets and theirmagnetic coupling mechanisms are introduced in detail according to their components. Furthermore, we discusshow to regulate the electronic structure and magnetism of 2D magnets by external (field modulation andinterfacial effect) and internal (stacking and defect) methods. Then we discuss the potential applications ofthese materials in spintronics devices and magnetic storage. Finally, the encountered difficulties and challengesof 2D magnetic materials and the possible research directions in the future are summarized and prospected. DOI: 10.7498/aps.71.20220301

Sub-Nanometer Electron Beam Phase Patterning in 2D Materials

Sub-Nanometer Electron Beam Phase Patterning in 2D Materials

ADVANCED SCIENCE 9, 2200702 (2022)

Zheng, Fangyuan; Guo, Deping; Huang, Lingli; Wong, Lok Wing; Chen, Xin; Wang, Cong; Cai, Yuan; Wang, Ning; Lee, Chun-Sing; Lau, Shu Ping; Ly, Thuc Hue; Ji, Wei and Zhao, Jiong

Abstract

Phase patterning in polymorphic two-dimensional (2D) materials offers diverse properties that extend beyond what their pristine structures can achieve. If precisely controllable, phase transitions can bring exciting new applications for nanometer-scale devices and ultra-large-scale integrations. Here, the focused electron beam is capable of triggering the phase transition from the semiconducting T” phase to metallic T’ and T phases in 2D rhenium disulfide (ReS2) and rhenium diselenide (ReSe2) monolayers, rendering ultra-precise phase patterning technique even in sub-nanometer scale is found. Based on knock-on effects and strain analysis, the phase transition mechanism on the created atomic vacancies and the introduced substantial in-plane compressive strain in 2D layers are clarified. This in situ high-resolution scanning transmission electron microscopy (STEM) and in situ electrical characterizations agree well with the density functional theory (DFT) calculation results for the atomic structures, electronic properties, and phase transition mechanisms. Grain boundary engineering and electrical contact engineering in 2D are thus developed based on this patterning technique. The patterning method exhibits great potential in ultra-precise electron beam lithography as a scalable top-down manufacturing method for future atomic-scale devices. DOI:10.1002/advs.202200702

Ferroelectricity in untwisted heterobilayers of transition metal dichalcogenides

Ferroelectricity in untwisted heterobilayers of transition metal dichalcogenides

Science 376, 973-978 (2022)

Lukas Rogée, Lvjin Wang, Yi Zhang, Songhua Cai, Peng Wang, Manish Chhowalla, Wei Ji & Shu Ping Lau

Two-dimensional materials with out-of-plane (OOP) ferroelectric and piezoelectric properties are highly desirable for the realization of ultrathin ferro- and piezoelectronic devices. We demonstrate unexpected OOP ferroelectricity and piezoelectricity in untwisted, commensurate, and epitaxial MoS2/WS2 heterobilayers synthesized by scalable one-step chemical vapor deposition. We show d33 piezoelectric constants of 1.95 to 2.09 picometers per volt that are larger than the natural OOP piezoelectric constant of monolayer In2Se3 by a factor of ~6. We demonstrate the modulation of tunneling current by about three orders of magnitude in ferroelectric tunnel junction devices by changing the polarization state of MoS2/WS2 heterobilayers. Our results are consistent with density functional theory, which shows that both symmetry breaking and interlayer sliding give rise to the unexpected properties without the need for invoking twist angles or moiré domains.

Chirality locking charge density waves in a chiral crystal

Chirality locking charge density waves in a chiral crystal

Nature Communications 13, 2914 (2022)

Geng Li#, Haitao Yang#, Peijie Jiang#, Cong Wang#, Qiuzhen Cheng, Shangjie Tian, Guangyuan Han, Chengmin Shen, Xiao Lin, Hechang Lei*, Wei Ji*, Ziqiang Wang* & Hong-Jun Gao*

Abstract

In Weyl semimetals, charge density wave (CDW) order can spontaneously break the chiral symmetry, gap out the Weyl nodes, and drive the material into the axion insulating phase. Investigations have however been limited since CDWs are rarely seen in Weyl semimetals. Here, using scanning tunneling microscopy/spectroscopy (STM/S), we report the discovery of a novel unidirectional CDW order on the (001) surface of chiral crystal CoSi – a unique Weyl semimetal with unconventional chiral fermions. The CDW is incommensurate with both lattice momentum and crystalline symmetry directions, and exhibits an intra unit cell π phase shift in the layer stacking direction. The tunneling spectrum shows a particle-hole asymmetric V-shaped energy gap around the Fermi level that modulates spatially with the CDW wave vector. Combined with first-principle calculations, we identify that the CDW is locked to the crystal chirality and is related by a mirror reflection between the two enantiomers of the chiral crystal. Our findings reveal a novel correlated topological quantum state in chiral CoSi crystals and raise the potential for exploring the unprecedented physical behaviors of unconventional chiral fermions.

Layer-dependent interlayer antiferromagnetic spin reorientation in air-stable semiconductor CrSBr

Layer-dependent interlayer antiferromagnetic spin reorientation in air-stable semiconductor CrSBr

ACS Nano 16, 11876–11883 (2022)

Chen Ye, Cong Wang, Qiong Wu, Sheng Liu, Jiayuan Zhou, Guopeng Wang, Aljoscha Söll, Zdenek Sofer, Ming Yue, Xue Liu, Mingliang Tian, Qihua Xiong, Wei Ji & Xiao Renshaw Wang

Abstract

Magnetic van der Waals (vdW) materials possess versatile spin configurations stabilized in reduced dimensions. One magnetic order is the interlayer antiferromagnetism in A-type vdW antiferromagnet, which may be effectively modified by the magnetic field, stacking order, and thickness scaling. However, atomically revealing the interlayer spin orientation in the vdW antiferromagnet is highly challenging, because most of the material candidates exhibit an insulating ground state or instability in ambient conditions. Here, we report the layer-dependent interlayer antiferromagnetic spin reorientation in air-stable semiconductor CrSBr using magnetotransport characterization and first-principles calculations. We reveal an odd–even layer effect of interlayer spin reorientation, which originates from the competitions among interlayer exchange, magnetic anisotropy energy, and extra Zeeman energy of uncompensated magnetization. Furthermore, we quantitatively constructed the layer-dependent magnetic phase diagram with the help of a linear-chain model. Our work uncovers the layer-dependent interlayer antiferromagnetic spin reorientation engineered by magnetic field in the air-stable semiconductor. (DOI: 10.1021/acsnano.2c01151)