One-Step Exfoliation Method for Plasmonic Activation of Large-Area 2D Crystals

One-Step Exfoliation Method for Plasmonic Activation of Large-Area 2D Crystals

Advanced Science 2022, DOI: 10.1002/advs.202204247

Qiang Fu#, Jia-Qi Dai#, Xin-Yu Huang#, Yun-Yun Dai, Yu-Hao Pan, Long-Long Yang, Zhen-Yu Sun, Tai-Min Miao, Meng-Fan Zhou, Lin Zhao, Wei-Jie Zhao, Xu Han, Jun-Peng Lu, Hong-Jun Gao, Xing-Jiang Zhou, Ye-Liang Wang*, Zhen-Hua Ni*, Wei Ji*, Yuan Huang*

Advanced exfoliation techniques are crucial for exploring the intrinsic properties and applications of 2D materials. Though the recently discovered Au-enhanced exfoliation technique provides an effective strategy for the preparation of large-scale 2D crystals, the high cost of gold hinders this method from being widely adopted in industrial applications. In addition, direct Au contact could significantly quench photoluminescence (PL) emission in 2D semiconductors. It is therefore crucial to find alternative metals that can replace gold to achieve efficient exfoliation of 2D materials. Here, the authors present a one-step Ag-assisted method that can efficiently exfoliate many large-area 2D monolayers, where the yield ratio is comparable to Au-enhanced exfoliation method. Differing from Au film, however, the surface roughness of as-prepared Ag films on SiO2/Si substrate is much higher, which facilitates the generation of surface plasmons resulting from the nanostructures formed on the rough Ag surface. More interestingly, the strong coupling between 2D semiconductor crystals (e.g., MoS2, MoSe2) and Ag film leads to a unique PL enhancement that has not been observed in other mechanical exfoliation techniques, which can be mainly attributed to enhanced light-matter interaction as a result of extended propagation of surface plasmonic polariton (SPP). This work provides a lower-cost and universal Ag-assisted exfoliation method, while at the same time offering enhanced SPP-matter interactions. DOI:10.1002/advs.202204247

Two-dimensional Dirac-line semimetals resistant to strong spin–orbit coupling

Two-dimensional Dirac-line semimetals resistant to strong spin–orbit coupling

Science Bulletin 67, 1954-1957 (2022)

Deping Guo#, Pengjie Guo#, Shijing Tan, Min Feng, Limin Cao, Zheng-Xin Liu*, Kai Liu*, Zhong-Yi Lu, Wei Ji*

Abstract

Dirac nodal-line semimetals (DNLSMs) host novel quasiparticle excitations and intriguing transport properties, which are, however, easily perturbed under strong spin-orbit coupling (SOC), especially in low-dimensions. Two-dimensional (2D) layers have numerous advantages and are under continuous development; however, 2D-DNLSMs resistant to SOC are yet to be discovered. Here, we report the C_2v×Z_2^T little co-group, a non-symmorphic symmetry we found in 2D, guarantees a robust 2D-DNLSM against SOC, which could be imposed in three-atomic-layer (3-AL) Bismuth (the brick phase, a novel Bi allotrope) and other layered materials. Intriguingly, (4n+2) valence electrons fill the electronic bands in 3-AL Bi, such that the nodal line passes the Fermi level where other low-energy states are gapped, allowing feasible observation of DNLSM-induced phenomena without interference from other bands in future transport measurements. Thus, our study demonstrates an unprecedented category of layered materials, allowing for the exploration of nearly isolated DNL states in 2D.

DOI: 10.1016/j.scib.2022.09.008

In-plane epitaxy-strain-tuning intralayer and interlayer magnetic coupling in CrSe2 and CrTe2 monolayers and bilayers

In-plane epitaxy-strain-tuning intralayer and interlayer magnetic coupling in CrSe2 and CrTe2 monolayers and bilayers

Phys. Rev. B 106, L081401 (2022)

Linlu Wu#, Linwei Zhou#, Xieyu Zhou, Cong Wang*, and Wei Ji*

Abstract

Mismatched lattice constants at a van der Waals epitaxy interface often introduce in-plane strains to the lattice of the epitaxial layer, termed epitaxy strain, wherein the strains do not follow the intralayer Poisson’s relation. In this study, we obtained the magnetic phase diagrams of CrSe2 and CrTe2 mono- and bilayers under epitaxy strain up to 8%, as predicted using density functional theory calculations. The magnetic phase diagrams indicate that the in-plane epitaxy strain manipulates either the intra- or interlayer magnetism. The in-plane strain varies the interlayer distance, defined using an interlayer Poisson’s ratio, which determines whether the interlayer magnetism follows a Bethe–Slater curve-like (BSC-like) or a reversed BSC-like behavior, depending on the in-plane magnetism. The tunability of the intralayer magnetism is a result of competing intralayer Cr–Cr superexchange interactions. A graphene substrate was introduced to examine the validity of our diagrams in practice. This study also afforded a tentative explanation on the previously reported magnetizations in CrSe2 and CrTe2 epitaxial mono- or bilayers under epitaxy strains, which had given rise to some controversy.