Canbo Zong#, Deping Guo#, Renhong Wang, Weihan Zhang, Jiaqi Dai, Zhongqin Zhang, Cong Wang*, Xianghua Kong, and Wei Ji*
Abstract:
The search for novel one-dimensional (1D) materials with exotic physical properties is crucial for advancing nanoelectronics and spintronics. Here, we perform a comprehensive high-throughput, first-principles study to explore the vast landscape of 1D transition-metal chalcogenides and halides. Starting with 6,832 candidate structures derived from 28 metals and 8 non-metals, we systematically evaluated their thermodynamic stability by comparing the formation energies of 1D chains against competing 2D phases, mimicking thermodynamic selectivity during nucleation. This screening identified 210 stable 1D magnetic chains. Furthermore, representation learning models revealed that chemical stoichiometry and the electron affinity of the non-metal element are key factors governing 1D stability. The stable materials exhibit a rich spectrum of properties, including diverse magnetic orders (FM, AFM) and Luttinger compensated antiferromagnetism in MnTe. We discovered 20 ferroelastic chains, with FeTe showing a giant magnetostriction of -5.57 %. Other emergent phenomena include Charge Density Wave (CDW) chains in FeTe and NiSe. Finally, our findings propose concrete platforms for quantum applications, such as the predicted realization of Majorana zero modes in a ferromagnetic CrCl2 chain on a superconducting NbSe2 substrate.
Online Preview: