Magnetic and Multiferroic Properties of Two-Dimensional FePX₃ and $CuFeP₂X₆$ (X = S, Se, and Te)

[Qingyang](https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Qingyang+Wang"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf) Wang, [Mengmeng](https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Mengmeng+Niu"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf) Niu, [Weikang](https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Weikang+Zhou"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf) Zhou, [Yicheng](https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Yicheng+Ma"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf) Ma, Chun [Huang,](https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Chun+Huang"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf) Gege [Yang,](https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Gege+Yang"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf) Yan [Shao,](https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Yan+Shao"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf) Xu [Wu,](https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Xu+Wu"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf) Cong [Wang,](https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Cong+Wang"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf) [Wei](https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Wei+Ji"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf) Ji,[*](#page-4-0) [Yeliang](https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Yeliang+Wang"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf) Wang,[*](#page-4-0) and [Jingsi](https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Jingsi+Qiao"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf) Qiao[*](#page-4-0)

between the spin-exchange interactions of the first and second nearest Fe atoms. Bilayer FeP X_3 shows weak interlayer interactions and keeps electronic and magnetic characteristics similar to those of the monolayer. Moreover, by introducing the nonmagnetic Cu atom into FePX₃, the inversion symmetry broken induces CuFeP₂X₆ to be multiferroic materials. The transition barrier between ferroelectric (FE) and antiferroelectric (AFE) phases in CuFeP₂S₆ and CuFeP₂Se₆ is 0.09 and 0.04 eV/f.u., similar to well-known multiferroic CuCrP₂S₆. FE-to-AFE phase transition is expected to be achieved by applying an electric field and uniaxial strain. $CuFeP₂Te₆$ shows the ground state with a distorted paraelectric phase. Our results show the fundamental properties and in-depth understanding of 2D FePX₃ and CuFeP₂X₆, guiding further investigation of 2D multifunctionalized magnetoelectric devices. KEYWORDS: *2D magnetic materials, DFT calculation, FePX3, antiferroelectricity, multiferroic*

■ **INTRODUCTION**

Materials with spin or electric polarization are promising for application in ultralow power storage devices.^{[1](#page-5-0)-[4](#page-5-0)} Particularly, multiferroic materials that exhibit magnetoelectronic coupling interaction exhibit better performance for multifunctionalized electronic devices. Therein, partial layered materials can maintain their multiferroic properties to the two-dimensional (2D) limit, accompanied by the characteristics of 2D materials: atomic layer thickness, abundant interface, and more flexible tunability than bulk materials.[5](#page-5-0)−[8](#page-5-0) 2D multiferroic materials are attracting much attention. 2D transition metal phosphorus chalcogenides MPX_3 (M = Mn, Fe, Ni, etc.; X = S, Se, and Te) show abundant magnetic properties.^{[9](#page-5-0)-[17](#page-5-0)} Meanwhile, ferroelectricity could be induced into $MPX₃$ by the substitution of metal atoms. For instance, multiferroic $CuCrP_2S_6^{18}$ $CuCrP_2S_6^{18}$ $CuCrP_2S_6^{18}$ displays tunable ferroelectricity and is a candidate for magnetoelectric memory.¹⁹ Two different types of ferroelectric phases of $CuVP₂S₆$ take FM and AFM orders, respectively, exhibiting a strong coupling between electric and magnetic polarization.²⁰ 2D $MNP₂X₆$ multiferroic system widely broadens the application prospect.^{21,22}

A representative MPX_3 , FePS₃ is a charge-transfer insulator with Mott insulating, $23,24$ has been verified as Ising-type $10,25$ $10,25$ antiferromagnetic material and persists down to the monolayer limit.^{26} limit.^{26} limit.^{26} In detail, FePS₃ exhibits intralayer zigzag antiferro-magnetic order and interlayer AFM configuration^{[27,28](#page-6-0)} with Neel temperature at ~118 K.¹⁰ The magnetic order of FePS₃ could induce anisotropy accompanying structural distortion.²⁶ It is still under debate whether the thickness of the material influences the magnetic properties. $28-30$ $28-30$ $28-30$ The magnetic and fundamental properties of the $FePX₃$ family need to be uncovered. Besides, when Cu substitution was brought into the $FePX₃$ family to break the inversion symmetry, ferroelectric properties may be introduced into the magnetic $CuFeP₂X₆$ system. The multiferroic properties of $CuFeP₂X₆$ systems require further investigation.

In this work, we systematically investigate the magnetic and ferroelectric properties of 2D FePX₃ and CuFeP₂X₆ (X = S, Se, and Te) by density functional theory. FeP X_3 is a charge-

Figure 1. (a) Atomic structure of bilayer FePS₃ in perspective views. Atomic structures of monolayer FePS₃ in top view (b) and side views (c, d). Yellow, light purple, and dark purple balls represent S, P, and Fe atoms, respectively. Red dotted lines labeled in (b) are the *a* and *b* axes. (e−i) Five magnetic configurations of FM, stripe AFM (sAFM), ferrimagnetic (FiM), Neel AFM (nAFM), and zigzag AFM (zAFM). *J*1−*J*³ are the first, second, and third nearest Fe–Fe spin-exchange parameters. d_1 and d_2 represent the distances between the two Fe atoms. Purple (pink) balls represent spin-up (down) Fe atoms. (j) Spin-exchange parameters of monolayer FePX₃.

transfer insulator. Monolayer $FePS₃$ and $FePS₃$ take zigzag antiferromagnetic (AFM) order, while FePTe₃ takes Neel AFM. Monolayer and bilayer $FePS₃$ show direct bandgaps ($∼1.6$ eV), while the bandgaps of FePSe₃ and FePTe₃ are indirect and dramatically decrease compared to $FePS₃$. Bilayer FePS₃ prefers $C2/m$ phase, and FePSe₃/FePTe₃ take R3 phases. Moreover, we provide an in-depth understanding of multiferroic $CuFeP₂X₆$. We found the AFE-to-FE phase transition is expected to be achieved by applying an electric field and uniaxial strain. This work is meaningful for understanding the magnetic and ferroelectric properties of FePX₃ and CuFeP₂X₆, and it may promote the discovery of more possible candidates for 2D multiferroic material.

■ **METHODS**

Density functional theory (DFT) calculations were performed using the generalized gradient approximation (GGA) for the exchangecorrelation potential, the projector augmented wave (PAW) method, $3^{3,32}$ $3^{3,32}$ $3^{3,32}$ and a plane-wave basis set as implemented in the Vienna Ab initio Simulation Package (VASP). 33,34 33,34 33,34 33,34 33,34 $\overline{1}\times\sqrt{3}$ or 2 \times $\sqrt{3}$ orthorhombic supercells of monolayer and bilayer $FePX₃$ were adopted to explore the seven intralayer magnetic configurations. Dispersion corrections were considered at the DFT-D3 level with the Perdew−Burke−Ernzerhof (PBE) functional.[35](#page-6-0),[36](#page-6-0) A 10 × 6 × 1 *k*mesh was used to sample the first Brillouin zone. A sufficiently large vacuum layer over 18 Å along the out-of-plane direction was adopted. The kinetic energy cutoff for the plane-wave basis was set to 700 eV for the geometric properties and electronic structures calculation. In structural relaxations, all atoms were fully relaxed until the residual force on every atom was less than 0.005 eV·Å[−]¹ and reached the energy convergence criteria of 1 × 10⁻⁶ eV. On-site Coulomb interactions were considered on the Fe d orbitals with an effective value $U = 3$ eV.

The in-plane strain was defined as

$$
\varepsilon = \frac{a - a_0}{a_0} \times 100\%
$$

where a_0 and a denote lattice constants before and after applying inplane strain.

The differential charge density was derived by

$$
\Delta \rho_{\rm d} = \rho_{\rm 0} - \rho_{\rm up} - \rho_{\rm dn}
$$

 ρ_0 is the charge density of bilayer FePX₃. $\rho_{\rm up}$ and $\rho_{\rm dn}$ are the charge densities of the upper and lower layers of bilayer FePX₃.

The phonon spectra were calculated using the finite difference method.^{[37](#page-6-0)} The phonon dispersions of CuFe $\overline{P_2S_6}$ were corrected by hiPhive with the correction of Born−Huang rotational invariance.³ The error caused by different supercells is considered. The climbing image nudged elastic band (CI-NEB) method 39 is used to determine the energy barriers of the various kinetic processes.

■ **RESULTS AND DISCUSSION**

For monolayer FePX₃ (X = S, Se, Te), transition metal magnetic atom Fe is surrounded by 6 chalcogenide atoms and connected by P−P bonds perpendicular to the out-of-plane direction (Figures 1a–d and [S1](https://pubs.acs.org/doi/suppl/10.1021/acsaelm.4c01547/suppl_file/el4c01547_si_001.pdf)). 1 × $\sqrt{3}$ and 2 × $\sqrt{3}$ orthorhombic supercells were adopted to consider seven magnetic configurations, including FM (Figure 1e), stripe AFM (sAFM) (Figure 1f), ferrimagnetic (FiM) (Figure 1g), Neel AFM (nAFM) (Figure 1h), zigzag AFM (zAFM) (Figure 1i), armchair AFM ([Figure](https://pubs.acs.org/doi/suppl/10.1021/acsaelm.4c01547/suppl_file/el4c01547_si_001.pdf) S2f), and armchair-fim AFM ([Figure](https://pubs.acs.org/doi/suppl/10.1021/acsaelm.4c01547/suppl_file/el4c01547_si_001.pdf) S2g). [Table](https://pubs.acs.org/doi/suppl/10.1021/acsaelm.4c01547/suppl_file/el4c01547_si_001.pdf) S1 shows the energy differences among these magnetic configurations. With the atomic number of X atoms increasing, intralayer magnetic ground states transfer from the zAFM of FePS₃ and FePS e_3 to the nAFM of FePT e_3 . The energy differences per Fe atom between zAFM and nAFM are 8, 5, and -5 meV in FePS₃, FePSe₃, and FePTe₃, respectively. Meanwhile, the lattice parameters increase with the chalcogenide atom number. The lattice constants of zAFM FePS₃, zAFM FePSe₃, and nAFM FePTe₃ are $a = 5.98 \text{ Å}/b =$ 10.30 Å, $a = 6.31 \text{ Å}/b = 10.85 \text{ Å}$, and $a = 6.76 \text{ Å}/b = 10.82 \text{ Å}$, respectively. We observed that the antiferromagnetic orders

Figure 2. (a, b) Bilayer $C2/m$ phase FePS₃ and R₃-phase FePT_{e₃ in the top and side views, respectively. (c, d) Differential charge density of bilayer} FePS₃ and FePTe₃. Pink and blue isosurfaces indicate charge accumulation and depletion, respectively. The isosurface value is 1×10^{-4} e/Bohr³. Spin densities of bilayer inter-AFM FePS₃ (e) and inter-FM FePTe₃ (f). The yellow and green regions represent positive and negative charge distributions. The isosurface value is 1 × 10^{−3} e/Bohr³. (g, h) Band structures and projected density of states (PDOS) on Fe1 and Fe2 atoms (Fe1 $=$ Fe3, Fe2 $=$ Fe4) of bilayer FePS₃ and FePTe₃.

induce anisotropy of the geometric structures. For zAFM configurations, the distances between adjacent Fe atoms show an ∼5% difference along and perpendicular to the zigzag magnetic order direction. $nAFM$ FePTe₃ shows the largest lattice anisotropy. In detail, the Fe−Fe interatomic distances of *d*1/*d*² ([Figure](#page-1-0) 1i) are 3.51/3.33 Å, 3.70/3.50 Å, and 3.83/4.12 Å for FePS₃, FePSe₃, and FePTe₃, respectively. FePTe₃ is an essential member of the $FePX₃$ family, but it has not been successfully synthesized experimentally due to the difficulty of synthesizing Te compounds. To verify the stability in theory, we calculated the phonon dispersion of $FePTe_3$. As shown in [Figure](https://pubs.acs.org/doi/suppl/10.1021/acsaelm.4c01547/suppl_file/el4c01547_si_001.pdf) S3, no imaginary frequencies appear, indicating the stability of FePTe₃. FePTe₃ is promising to be synthesized experimentally.

We further calculated the intralayer spin-exchange parameters to understand the magnetic properties and the magnetic order transition. As illustrated in [Figure](#page-1-0) 1h, J_n ($n = 1, 2, 3$) indicates spin-exchange parameters of Fe−Fe with the nearest to farest distances. Each system's four most stable magnetic configurations are selected for *J* calculation. A Heisenberg model including J_n was adopted to express the total energy of different magnetic configurations as shown in [Formulas](https://pubs.acs.org/doi/suppl/10.1021/acsaelm.4c01547/suppl_file/el4c01547_si_001.pdf) S1− [S7](https://pubs.acs.org/doi/suppl/10.1021/acsaelm.4c01547/suppl_file/el4c01547_si_001.pdf). The models of FM, nAFM, and zAFM configurations reveal that J_1 −2 J_2 and J_3 play an important role in magnetic order for FePX₃, as shown in [Figure](#page-1-0) 1j. We found that J_3 is in the range of -1 to -3 meV, and *J*₃ is more prominent than *J*₁− 2*J*2. The *J*³ spin-exchange interaction determined the AFM magnetic ground states of FePX₃. The competition between J_1 and J_2 leads to the transformation from zAFM in FePS₃/ FePSe₃ to nAFM in FePTe₃ [\(Figure](#page-1-0) 1j). J_1 involves a direct exchange interaction between Fe−Fe atoms and superexchange interaction through the Fe–S–Fe chain. *J*₂ only includes bi-superexchange interaction. Consequently, as the atomic number of the X atoms increases, the Fe−Fe distance elongates and *J*1−2*J*² exhibits a rapid decrease, ultimately leading to the intralayer magnetic ground state transition.

We further investigated the magnetic properties of bilayer FePX₃. Bulk FePS₃ and FePSe₃ take two representative phases, $C2/m⁴⁰$ $C2/m⁴⁰$ $C2/m⁴⁰$ and $R3²⁷$ $R3²⁷$ $R3²⁷$ respectively. For $C2/m$ phase, as shown in the red circle and rectangle in Figure 2a, the S atom of the lower layer aligns with a P atom of the upper layer. The S atom of the lower layer aligns with another S atom at the adjacent layer, corresponding to the R3 phase in Figure 2b. Bilayer $FePTe₃$ with these two phases were considered. The energy difference between $C2/m$ and $R3$ for FePTe₃ is 0.061 eV per 1 $\times \sqrt{3}$ supercell. Bilayer FePS₃ and FePSe₃/FePTe₃ take the most stable *C*2/*m* and R₃^{phase, respectively [\(Figure](https://pubs.acs.org/doi/suppl/10.1021/acsaelm.4c01547/suppl_file/el4c01547_si_001.pdf) S4).} Though they show distinct phases, the distance between interlayer adjacent atoms is >3.8 Å, exhibiting a weak interlayer coupling in FeP X_3 . With the atomic number of X atoms increasing, the interlayer X-X interaction becomes slightly stronger, leading $FePSe₃$ and $FePTe₃$ to be the R3 ground state, which involves more X-X interactions compared to *C*2/*m* phases, according to Figure 2c,d.

Next, we analyzed the effect of phase on the magnetic and electronic properties of the bilayer FeP X_3 . Intralayer $zAFM/$ nAFM/FM/sAFM and interlayer FM/AFM magnetic configurations were considered ([Table](https://pubs.acs.org/doi/suppl/10.1021/acsaelm.4c01547/suppl_file/el4c01547_si_001.pdf) S2). We found that the energy differences between interlayer magnetic orders are 0.03−37.69 meV per Fe atom. The interlayer magnetic order transfers from the interlayer AFM of FePS₃ (Figure 2a) to FM of FePTe₃ (Figure 2b). The intralayer magnetic order remains zAFM (Figure 2e) or nAFM (Figure 2f) , the same as that of monolayer FeP X_3 . Besides, bilayer FeP X_3 shows similar

Figure 3. (a−d) Atomic structure of monolayer CuFeP₂S₆ in top view (a) and side view for ferroelectric-up (b) and ferroelectric-down (c) and antiferroelectric (d) phases. (e) Kinetic pathways of phase transitions among different FE and AFE CuFeP₂S₆. The pathways of the red and black lines are FE-up-PE-FE-down and FE-up-AFE-FE-down, respectively.

Figure 4. (a) Energy evolution of FE and AFE CuFeP₂S₆ by an electric field. The energy of the AFE CuFeP₂S₆ ground state is set at 0 eV. (b) Energy difference between FE CuFeP₂S₆ and AFE CuFeP₂S₆ ($E_{\text{FE-AFE}}$) under uniaxial strain in the *a*(*x*) axis (black line) and *b*(*y*) axis (red line). (c, d) Configurations of intralayer FM (c) and AFM (d) CuFeP₂S₆ in top views. (e) Energy difference per Fe atom between FM and AFM for FePX₃ (black line) and $CuFeP₂X₆$ (red line).

electronic bandgap and characteristics to monolayer ones, as shown in the band structure ([Figure](https://pubs.acs.org/doi/suppl/10.1021/acsaelm.4c01547/suppl_file/el4c01547_si_001.pdf) S5) and total density of states (DOS) [\(Figure](https://pubs.acs.org/doi/suppl/10.1021/acsaelm.4c01547/suppl_file/el4c01547_si_001.pdf) S6). The upper and lower layers of $FePX₃$ show similar projected DOS on Fe atoms (PDOS) features. The PDOS of the upper layer $FePX₃$ is shown in [Figures](#page-2-0) 2g,h, S7, [and](https://pubs.acs.org/doi/suppl/10.1021/acsaelm.4c01547/suppl_file/el4c01547_si_001.pdf) S8. $FePS₃$ and $FePS₃$ show Mott insulating in recent experimental and theoretical results.^{[23,24](#page-5-0)} $FePS₃ FePS₃$ and $FePT₃$ are charge-transfer insulators, with a larger Mott gap than the bandgap. The upper and lower Hubbard bands are mainly contributed by the d orbital of Fe atoms according to PDOS [\(Figures](https://pubs.acs.org/doi/suppl/10.1021/acsaelm.4c01547/suppl_file/el4c01547_si_001.pdf) S7 and S8). The direct bandgaps of monolayer and bilayer $FePS₃$ are both 1.57 eV at the Γ point ([Figure](#page-2-0) 2g). The bandgaps of monolayer and bilayer FePSe₃/FePTe₃ are indirect and decrease to $1.44/0.61$ eV [\(Figures](https://pubs.acs.org/doi/suppl/10.1021/acsaelm.4c01547/suppl_file/el4c01547_si_001.pdf) S5e and [2h](#page-2-0)), respectively. Monolayer and bilayer bandgaps are similar to the bulk ones,^{[38](#page-6-0),[40](#page-6-0)} indicating the weak interlayer coupling effect on the electronic properties in FePX₃.

Introducing Cu atoms into $FePX₃$ breaks the inversion symmetry and is expected to introduce ferroelectricity. MNP_2X_6 family, e.g., $CuNP_2S_6$ (N = Cr, In, V), are significant candidates for 2D ferroelectric materials. Analogously, we constructed a monolayer CuFe P_2X_6 unit cell by replacing 2 Fe atoms with 2 Cu atoms in $1 \times \sqrt{3}$ FePX₃ supercell, as shown in Figure 3a−d. Cu substitution induces that lattice constants of CuFeP₂S₆ expanded to $a = 6.01$ Å and $b = 10.40$ Å from those of FePS₃ (*a* = 5.98 Å, *b* = 10.30 Å). Similar to $CuCrP_2S_6^{41}$ $CuCrP_2S_6^{41}$ $CuCrP_2S_6^{41}$ total DOS and PDOS ([Figures](https://pubs.acs.org/doi/suppl/10.1021/acsaelm.4c01547/suppl_file/el4c01547_si_001.pdf) S9-S11) indicate that $CuFeP₂X₆$ show Mott insulating, corresponding to chargetransfer insulators. The bandgaps of monolayer $CuFeP₂S₆$, $CuFeP₂Se₆$ and $CuFeP₂Te₆$ are 0.88, 0.81, and 0.45 eV, respectively. The Cu atoms shift along the out-of-plane direction, which could induce different electric polarization. Figure 3b,c shows that when two Cu atoms are located at the upper or lower sublayer of $CuFeP₂S₆$, forming FE phases, the direction of the dipole moment is along +*z* and −*z*, respectively. The dipole moments of monolayer FE CuFe P_2X_6 $(X = S, Se, Te)$ are 0.55, 0.33, and 0.28 pC/m, respectively. The dipole moment of $CuFeP₂X₆$ decreased with the atomic number of X atom increasing and is at the same order of magnitude with $0.6-0.8$ pC/m of monolayer CuCrP₂S₆, $CuCrP₂Se₆ CuVP₂S₆$, and $CuVP₂Se₆$.^{[42](#page-6-0)}

When two Cu atoms are located at different sublayers in [Figure](#page-3-0) 3d, no net dipole moment remains, leading to the AFE phase. AFE phases are 0.085, 0.077, and 0.058 eV more stable than the FE phases of CuFe P_2X_6 , respectively. CuFe P_2S_6 and CuFe P_2 Se₆ take AFE ground states ([Figure](https://pubs.acs.org/doi/suppl/10.1021/acsaelm.4c01547/suppl_file/el4c01547_si_001.pdf) S12). However, the ground state of $CuFeP₂Te₆$ is a distorted PE (paraelectric) phase ([Figure](https://pubs.acs.org/doi/suppl/10.1021/acsaelm.4c01547/suppl_file/el4c01547_si_001.pdf) S13). Cu atoms bond with four surrounding Te atoms rather than six Te atoms. We also calculated the phonon dispersion of $CuFeP₂S₆$. As shown in [Figure](https://pubs.acs.org/doi/suppl/10.1021/acsaelm.4c01547/suppl_file/el4c01547_si_001.pdf) S14, no imaginary frequencies appear, indicating the stability of $CuFeP₂S₆$. To confirm the ferroelectricity of $CuFeP₂S₆$ ([Figure](#page-3-0) 3e) and $CuFeP₂Se₆$ ([Figure](https://pubs.acs.org/doi/suppl/10.1021/acsaelm.4c01547/suppl_file/el4c01547_si_001.pdf) S15b), we calculated the transition barrier between two FE configurations with opposite polarization directions and between FE and AFE configurations using the climbing image nudged elastic band (CI-NEB) method. [Figure](#page-3-0) [3](#page-3-0)e shows two possible transition pathways from the FE-up to FE-down phase of $CuFeP_2S_6$. The PE pathway should overcome ∼0.37 eV barrier per unit cell (∼0.19 eV/f.u.). Moreover, the transition barrier from FE to AFE is about 0.18 eV per unit cell (0.09 eV/f.u.) for CuFeP₂S₆ CuFeP₂Se₆, and 0.08 eV per unit cell (0.04 eV/f.u.) for $CuFeP₂Se₆$. These barriers are smaller than that of CuInP_2S_6 and similar to that of $CuCrP₂S₆^{19,43}$ $CuCrP₂S₆^{19,43}$ $CuCrP₂S₆^{19,43}$ $CuCrP₂S₆^{19,43}$ $CuCrP₂S₆^{19,43}$

We investigated the electric field and strain effect on manipulating the ferroelectricity of monolayer $CuFeP₂X₆$. [Figure](#page-3-0) 4a shows the variation of the energy difference between the FE and AFE (E_{FE-AFE}) for monolayer CuFe P_2S_6 when an out-of-plane electric field is applied. For the ferroelectric polarization state, a negative electric field, the same as the direction of the dipole moment in the FE phase, could effectively reduce the $E_{\text{FE-AFE}}$, promoting the phase transition between the FE and AFE. A positive electric field in the dipole moment's opposite direction will suppress the phase transition. Furthermore, the uniaxial strain along the *a* or *b* axis was applied to CuFeP₂S₆ to modulate E _{FE-AFE}, respectively [\(Figure](#page-3-0) [4](#page-3-0)b). It was found that tensile and compressive strain along the *a* or *b* axis could decrease and increase the $E_{\text{FE-AFE}}$, which is also a means to manipulate the ferroelectricity. Similar behavior has also been noted in $CuFeP₂Se₆$ [\(Figure](https://pubs.acs.org/doi/suppl/10.1021/acsaelm.4c01547/suppl_file/el4c01547_si_001.pdf) S16). These findings may provide guidance and information for future explorations of the two-dimensional ferroelectric family.

Moreover, the magnetic ground states of the monolayer $CuFeP₂S₆$ were studied by considering FM ([Figure](#page-3-0) 4c) and nAFM ([Figure](#page-3-0) 4d) configurations. nAFM magnetic order is magnetic ground state in both FE and AFE phases, which is robust enough, but it is challenging to switch the magnetic order. Compared with $FePX₃$, the Cu atom replacement also influences magnetization. For example, the energy difference between FM and AFM in CuFe P_2S_6 is around 30 meV per Fe atom, which is lower than 60 meV in FePS₃ ([Figure](#page-3-0) 4e). Although introducing nonmagnetic Cu atoms disrupts the first and third nearest-neighbor exchange interactions in $FePX₃$, the magnetic moment per Fe atom increased from 3.56 μ _B (FePS₃) to 3.83 μ_B (CuFeP₂S₆), 3.53 μ_B (FePSe₃) to 3.76 μ_B (CuFeP₂Se₆), and 3.45 μ_B (FePTe₃) to 3.62 μ_B (CuFeP₂Te₆). $CuFeP₂S₆$ coexists with magnetic properties and ferroelectricity. The multiferroic properties of $CuFeP₂S₆$ make it promising for application in the storage field.

■ **CONCLUSIONS**

In this work, we investigated the magnetic and electronic properties of 2D FeP X_3 (X = S, Se, Te) by first-principles calculations. 2D FeP X_3 exhibits intralayer antiferromagnetic ground states and weak interlayer coupling. To further explore the FeP X_3 family, we replace half of the Fe atoms with Cu atoms and analyze the ferroelectric properties of the monolayer CuFe P_2X_6 material. CuFe P_2S_6 and CuFe P_2Se_6 take the AFE ground state. However, the ground state of $CuFeP₂Te₆$ is a distorted PE phase. The electric field in the same direction of the dipole moment and uniaxial tensile strain could decrease the energy difference between AFE and FE, promoting the phase transition between AFE and FE. These results provide an in-depth understanding and analysis of the magnetic properties of FeP X_3 and multiferroic properties of CuFeP₂ X_6 , facilitating the exploration of the 2D multiferroic family.

■ **ASSOCIATED CONTENT**

\bullet Supporting Information

The Supporting Information is available free of charge at [https://pubs.acs.org/doi/10.1021/acsaelm.4c01547.](https://pubs.acs.org/doi/10.1021/acsaelm.4c01547?goto=supporting-info)

Atomic structure of all materials mentioned in the manuscript; seven magnetic configurations and their energies of monolayer $FePX₃$; phonon dispersions of monolayer FePTe₃ and CuFeP₂S₆; band structures and density of states; transition pathways of FE to AFE in monolayer $CuFeP₂S₆$ and $CuFeP₂Se₆$; energy evolution of FE and AFE CuFe P_2S_6 and CuFe P_2S_6 under electric field and uniaxial strain; and Heisenberg model including the nearest spin-exchange parameters. ([PDF\)](https://pubs.acs.org/doi/suppl/10.1021/acsaelm.4c01547/suppl_file/el4c01547_si_001.pdf)

■ **AUTHOR INFORMATION**

Corresponding Authors

- Wei Ji − *Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-Nano Devices, Department of Physics, Renmin University of China, Beijing 100872, China;* [orcid.org/0000-0001-5249-6624;](https://orcid.org/0000-0001-5249-6624) Email: [wji@](mailto:wji@ruc.edu.cn) [ruc.edu.cn](mailto:wji@ruc.edu.cn)
- Yeliang Wang − *School of Integrated Circuits and Electronics & Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China;* [orcid.org/0000-0002-8896-0748;](https://orcid.org/0000-0002-8896-0748) Email: [yeliang.wang@](mailto:yeliang.wang@bit.edu.cn) [bit.edu.cn](mailto:yeliang.wang@bit.edu.cn)
- Jingsi Qiao − *School of Integrated Circuits and Electronics & Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China;* [orcid.org/0000-0001-6464-5500;](https://orcid.org/0000-0001-6464-5500) Email: [qiaojs@](mailto:qiaojs@bit.edu.cn) [bit.edu.cn](mailto:qiaojs@bit.edu.cn)

Authors

- Qingyang Wang − *School of Integrated Circuits and Electronics & Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China*
- Mengmeng Niu − *School of Integrated Circuits and Electronics & Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China*
- Weikang Zhou − *School of Integrated Circuits and Electronics & Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China*

Yicheng Ma − *School of Integrated Circuits and Electronics & Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China*

Chun Huang − *School of Integrated Circuits and Electronics & Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China*

Gege Yang − *School of Integrated Circuits and Electronics & Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China*

Yan Shao − *School of Integrated Circuits and Electronics & Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China*

Xu Wu − *School of Integrated Circuits and Electronics & Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China;* orcid.org/0000-0002-2252-322X

Cong Wang − *Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-Nano Devices, Department of Physics, Renmin University of China, Beijing 100872, China*

Complete contact information is available at: [https://pubs.acs.org/10.1021/acsaelm.4c01547](https://pubs.acs.org/doi/10.1021/acsaelm.4c01547?ref=pdf)

Notes

The authors declare no competing financial interest.

■ **ACKNOWLEDGMENTS**

The authors gratefully acknowledge financial support from the National Key Research and Development Program of China (2024YFE0109200, 2021YFA1400100, 2022YFA1403500), the National Natural Science Foundation of China (Grants Nos. 12374170, 62171035, 92163206, 62375021, 11974422, 12104504), the Beijing Nova Program from Beijing Municipal Science & Technology Commission (Z211100002121072), the Fundamental Research Funds for the Central Universities of China, and the Research Funds of Renmin University of China (Grant Nos. 16XNLQ01 and 19XNQ025). Calculations were performed at the Beijing Super Cloud Computing Center.

■ **REFERENCES**

(1) Spaldin, N. A.; Ramesh, R. Advances in [magnetoelectric](https://doi.org/10.1038/s41563-018-0275-2) [multiferroics.](https://doi.org/10.1038/s41563-018-0275-2) *Nat. Mater.* 2019, *18* (3), 203−212.

(2) Bibes, M.; Barthelemy, A. [Multiferroics:](https://doi.org/10.1038/nmat2189) towards a magnetoelectric [memory.](https://doi.org/10.1038/nmat2189) *Nat. Mater.* 2008, *7* (6), 425−426.

(3) Han, W.; Kawakami, R. K.; Gmitra, M.; Fabian, J. [Graphene](https://doi.org/10.1038/nnano.2014.214) [spintronics.](https://doi.org/10.1038/nnano.2014.214) *Nat. Nanotechnol.* 2014, *9* (10), 794−807.

(4) Ohno, H.; Chiba, D.; Matsukura, F.; Omiya, T.; Abe, E.; Dietl, T.; Ohno, Y.; Ohtani, K. Electric-field control of [ferromagnetism.](https://doi.org/10.1038/35050040) *Nature* 2000, *408* (6815), 944−946.

(5) Wang, T.; Liu, F.; Liu, S.; Liu, B.; Zhu, S. Interface [engineering](https://doi.org/10.1039/D3CP01840G) strategy for [multisource](https://doi.org/10.1039/D3CP01840G) spintronic devices via $TMPS₄$ modulation of [black-phosphorus.](https://doi.org/10.1039/D3CP01840G) *Phys. Chem. Chem. Phys.* 2023, *25* (35), 23988− 23994.

(6) Guo, Y.; Yu, X.; Zhang, Y.; Zhang, X.; Yuan, S.; Li, Y.; Yang, S. A.; Wang, J. 2D [Multiferroicity](https://doi.org/10.1021/acsnano.2c04017?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) with Ferroelectric Switching Induced [Spin-Constrained](https://doi.org/10.1021/acsnano.2c04017?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Photoelectricity. *ACS Nano* 2022, *16* (7), 11174− 11181.

(7) Tepliakov, N. V.; Ma, R.; Lischner, J.; Kaxiras, E.; Mostofi, A. A.; Pizzochero, M. Dirac [Half-Semimetallicity](https://doi.org/10.1021/acs.nanolett.3c01940?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) and Antiferromagnetism in Graphene [Nanoribbon/Hexagonal](https://doi.org/10.1021/acs.nanolett.3c01940?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Boron Nitride Heterojunctions. *Nano Lett.* 2023, *23* (14), 6698−6704.

(8) Alliati, I. M.; Evans, R. F. L.; Novoselov, K. S.; Santos, E. J. G. Relativistic domain-wall dynamics in van der Waals [antiferromagnet](https://doi.org/10.1038/s41524-021-00683-6) [MnPS3.](https://doi.org/10.1038/s41524-021-00683-6) *npj Comput. Mater.* 2022, *8* (1), No. 3.

(9) Qian, X.; Chen, L.; Yin, L.; Liu, Z.; Pei, S.; Li, F.; Hou, G.; Chen, S.; Song, L.; Thebo, K. H.; Cheng, H. M.; Ren, W. CdPS₃ [nanosheets-](https://doi.org/10.1126/science.abb9704) based membrane with high proton [conductivity](https://doi.org/10.1126/science.abb9704) enabled by Cd [vacancies.](https://doi.org/10.1126/science.abb9704) *Science* 2020, *370* (6516), 596−600.

(10) Nauman, M.; Kiem, D. H.; Lee, S.; Son, S.; Park, J.-G.; Kang, W.; Han, M. J.; Jo, Y. Complete mapping of magnetic [anisotropy](https://doi.org/10.1088/2053-1583/abeed3) for [prototype](https://doi.org/10.1088/2053-1583/abeed3) Ising van der Waals FePS₃. 2D Mater. 2021, 8 (3), No. 035011.

(11) Neal, S. N.; Kim, H. S.; O'Neal, K. R.; Haglund, A. V.; Smith, K. A.; Mandrus, D. G.; Bechtel, H. A.; Carr, G. L.; Haule, K.; Vanderbilt, D.; Musfeldt, J. L. [Symmetry](https://doi.org/10.1103/PhysRevB.102.085408) crossover in layered MPS₃ complexes (M = Mn, Fe, Ni) via near-field infrared [spectroscopy.](https://doi.org/10.1103/PhysRevB.102.085408) *Phys. Rev. B* 2020, *102* (8), No. 085408.

(12) Du, K. Z.; Wang, X. Z.; Liu, Y.; Hu, P.; Utama, M. I.; Gan, C. K.; Xiong, Q.; Kloc, C. Weak Van der Waals Stacking, [Wide-Range](https://doi.org/10.1021/acsnano.5b05927?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Band Gap, and Raman Study on [Ultrathin](https://doi.org/10.1021/acsnano.5b05927?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Layers of Metal Phosphorus [Trichalcogenides.](https://doi.org/10.1021/acsnano.5b05927?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) *ACS Nano* 2016, *10* (2), 1738−1743.

(13) Kargar, F.; Coleman, E. A.; Ghosh, S.; Lee, J.; Gomez, M. J.; Liu, Y.; Magana, A. S.; Barani, Z.; Mohammadzadeh, A.; Debnath, B.; Wilson, R. B.; Lake, R. K.; Balandin, A. A. Phonon and [Thermal](https://doi.org/10.1021/acsnano.9b09839?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Properties of [Quasi-Two-Dimensional](https://doi.org/10.1021/acsnano.9b09839?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) FePS₃ and MnPS₃ Antiferromagnetic [Semiconductors.](https://doi.org/10.1021/acsnano.9b09839?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) *ACS Nano* 2020, *14* (2), 2424−2435.

(14) Wang, X.; Cao, J.; Lu, Z.; Cohen, A.; Kitadai, H.; Li, T.; Tan, Q.; Wilson, M.; Lui, C. H.; Smirnov, D.; Sharifzadeh, S.; Ling, X. Spin-induced linear polarization of [photoluminescence](https://doi.org/10.1038/s41563-021-00968-7) in antiferro[magnetic](https://doi.org/10.1038/s41563-021-00968-7) van der Waals crystals. *Nat. Mater.* 2021, *20* (7), 964−970.

(15) Wang, X.; Cao, J.; Li, H.; Lu, Z.; Cohen, A.; Haldar, A.; Kitadai, H.; Tan, Q.; Burch, K. S.; Smirnov, D.; Xu, W.; Sharifzadeh, S.; Liang, L.; Ling, X. Electronic Raman scattering in the 2D [antiferromagnet](https://doi.org/10.1126/sciadv.abl7707) [NiPS3.](https://doi.org/10.1126/sciadv.abl7707) *Sci. Adv.* 2022, *8* (2), No. eabl7707.

(16) Samal, R.; Sanyal, G.; Chakraborty, B.; Rout, C. S. [Two](https://doi.org/10.1039/D0TA09752G)dimensional transition metal phosphorous [trichalcogenides](https://doi.org/10.1039/D0TA09752G) $(MPX₃)$: a review on emerging trends, current state and future [perspectives.](https://doi.org/10.1039/D0TA09752G) *J. Mater. Chem. A* 2021, *9* (5), 2560−2591.

(17) Koo, H. J.; Kremer, R.; Whangbo, M. H. [Unusual](https://doi.org/10.3390/molecules26051410) Spin Exchanges Mediated by the Molecular Anion $P_2S_6^{4-}$: [Theoretical](https://doi.org/10.3390/molecules26051410) Analyses of the Magnetic Ground States, Magnetic [Anisotropy](https://doi.org/10.3390/molecules26051410) and Spin [Exchanges](https://doi.org/10.3390/molecules26051410) of MPS_3 ($M = Mn$, Fe, Co, Ni). *Molecules* 2021, 26 (5), No. 1410.

(18) Wang, X.; Shang, Z.; Zhang, C.; Kang, J.; Liu, T.; Wang, X.; Chen, S.; Liu, H.; Tang, W.; Zeng, Y. J.; Guo, J.; Cheng, Z.; Liu, L.; Pan, D.; Tong, S.; Wu, B.; Xie, Y.; Wang, G.; Deng, J.; Zhai, T.; Deng, H. X.; Hong, J.; Zhao, J. Electrical and magnetic [anisotropies](https://doi.org/10.1038/s41467-023-36512-1) in van der Waals [multiferroic](https://doi.org/10.1038/s41467-023-36512-1) CuCrP2S6. *Nat. Commun.* 2023, *14* (1), No. 840.

(19) Lai, Y.; Song, Z.; Wan, Y.; Xue, M.; Wang, C.; Ye, Y.; Dai, L.; Zhang, Z.; Yang, W.; Du, H.; Yang, J. [Two-dimensional](https://doi.org/10.1039/C9NR00738E) ferromagnetism and driven [ferroelectricity](https://doi.org/10.1039/C9NR00738E) in van der Waals $CuCrP_2S_6$. *Nanoscale* 2019, *11* (12), 5163−5170.

(20) Duan, X.; Wang, H.; Chen, X.; Qi, J. Multiple [polarization](https://doi.org/10.1103/PhysRevB.106.115403) phases and strong [magnetoelectric](https://doi.org/10.1103/PhysRevB.106.115403) coupling in the layered transition metal phosphorus [chalcogenides](https://doi.org/10.1103/PhysRevB.106.115403) $TMP_2X_6(T = Cu, Ag; M = Cr, V; X =$ S,Se) by controlling the interlayer interaction and [dimension.](https://doi.org/10.1103/PhysRevB.106.115403) *Phys. Rev. B* 2022, *106* (11), No. 115403.

(21) He, Q.; Belianinov, A.; Dziaugys, A.; Maksymovych, P.; Vysochanskii, Y.; Kalinin, S. V.; Borisevich, A. Y. [Antisite](https://doi.org/10.1039/C5NR04779J) defects in layered multiferroic CuCr_{0.9}In_{0.1}P₂S₆. *Nanoscale* **2015**, *7* (44), 18579− 18583.

(22) Hao, K. R.; Ma, X. Y.; Zhang, Z.; Lyu, H. Y.; Yan, Q. B.; Su, G. Ferroelectric and [Room-Temperature](https://doi.org/10.1021/acs.jpclett.1c02782?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Ferromagnetic Semiconductors in the 2D $M_1M_{II}Ge_2X_6$ Family: [First-Principles](https://doi.org/10.1021/acs.jpclett.1c02782?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) and Machine Learning [Investigations.](https://doi.org/10.1021/acs.jpclett.1c02782?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) *J. Phys. Chem. Lett.* 2021, *12* (41), 10040−10051.

(23) Dedkov, Y.; Guo, Y.; Voloshina, E. [Progress](https://doi.org/10.1088/2516-1075/acfa4e) in the studies of electronic and magnetic [properties](https://doi.org/10.1088/2516-1075/acfa4e) of layered $MPX₃$ materials (M: transition metal, X: [chalcogen\).](https://doi.org/10.1088/2516-1075/acfa4e) *Electron. Struct.* 2023, *5* (4), No. 043001.

(24) Jin, Y.; Yan, M.; Kremer, T.; Voloshina, E.; Dedkov, Y. [Mott](https://doi.org/10.1038/s41598-021-04557-1)− Hubbard [insulating](https://doi.org/10.1038/s41598-021-04557-1) state for the layered van der Waals FePX $_3$ (X: S, Se) as revealed by NEXAFS and resonant [photoelectron](https://doi.org/10.1038/s41598-021-04557-1) spectrosco[py.](https://doi.org/10.1038/s41598-021-04557-1) *Sci. Rep.* 2022, *12* (1), No. 735.

(25) Joy, P. A.; Vasudevan, S. [Magnetism](https://doi.org/10.1103/PhysRevB.46.5425) in the layered transitionmetal [thiophosphates](https://doi.org/10.1103/PhysRevB.46.5425) MPS_3 ($M = Mn$, Fe, and Ni). *Phys. Rev. B* 1992, *46* (9), 5425−5433.

(26) Lee, J. U.; Lee, S.; Ryoo, J. H.; Kang, S.; Kim, T. Y.; Kim, P.; Park, C. H.; Park, J. G.; Cheong, H. [Ising-Type](https://doi.org/10.1021/acs.nanolett.6b03052?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Magnetic Ordering in [Atomically](https://doi.org/10.1021/acs.nanolett.6b03052?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Thin FePS3. *Nano Lett.* 2016, *16* (12), 7433−7438.

(27) Zheng, Y.; Jiang, X.-x.; Xue, X.-x.; Dai, J.; Feng, Y. Ab [initio](https://doi.org/10.1103/PhysRevB.100.174102) study of [pressure-driven](https://doi.org/10.1103/PhysRevB.100.174102) phase transition in FePS₃ and FePSe₃. *Phys. Rev. B* 2019, *100* (17), No. 174102.

(28) Wang, X.; Du, K.; Fredrik Liu, Y. Y.; Hu, P.; Zhang, J.; Zhang, Q.; Owen, M. H. S.; Lu, X.; Gan, C. K.; Sengupta, P.; Kloc, C.; Xiong, Q. Raman spectroscopy of atomically thin [two-dimensional](https://doi.org/10.1088/2053-1583/3/3/031009) magnetic iron [phosphorus](https://doi.org/10.1088/2053-1583/3/3/031009) trisulfide (FePS₃) crystals. 2D Mater. **2016**, 3 (3), No. 031009.

(29) Kim, T. Y.; Park, C. H. Magnetic [Anisotropy](https://doi.org/10.1021/acs.nanolett.1c03992?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) and Magnetic Ordering of [Transition-Metal](https://doi.org/10.1021/acs.nanolett.1c03992?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Phosphorus Trisulfides. *Nano Lett.* 2021, *21* (23), 10114−10121.

(30) Martín-Pérez, L.; Medina Rivero, S.; Vazquez Sulleiro, M.; Naranjo, A.; Gomez, I. J.; Ruiz-Gonzalez, M. L.; Castellanos-Gomez, A.; Garcia-Hernandez, M.; Perez, E. M.; Burzuri, E. Direct [Magnetic](https://doi.org/10.1021/acsnano.2c11654?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Evidence, Functionalization, and [Low-Temperature](https://doi.org/10.1021/acsnano.2c11654?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Magneto-Elec-tron Transport in [Liquid-Phase](https://doi.org/10.1021/acsnano.2c11654?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Exfoliated FePS₃. *ACS Nano* 2023, 17 (3), 3007−3018.

(31) Blöchl, P. E. Projector [augmented-wave](https://doi.org/10.1103/PhysRevB.50.17953) method. *Phys. Rev. B* 1994, *50* (24), 17953−17979.

(32) Kresse, G.; Joubert, D. From ultrasoft [pseudopotentials](https://doi.org/10.1103/PhysRevB.59.1758) to the projector [augmented-wave](https://doi.org/10.1103/PhysRevB.59.1758) method. *Phys. Rev. B* 1999, *59* (3), 1758− 1775.

(33) Kresse, G.; Furthmuller, J. Efficient iterative [schemes](https://doi.org/10.1103/PhysRevB.54.11169) for ab initio [total-energy](https://doi.org/10.1103/PhysRevB.54.11169) calculations using a plane-wave basis set. *Phys. Rev. B* 1996, *54* (16), 11169−11186.

(34) Kresse, G.; Furthmüller, J. [Efficiency](https://doi.org/10.1016/0927-0256(96)00008-0) of ab-initio total energy calculations for metals and [semiconductors](https://doi.org/10.1016/0927-0256(96)00008-0) using a plane-wave basis [set.](https://doi.org/10.1016/0927-0256(96)00008-0) *Comput. Mater. Sci.* 1996, *6* (1), 15−50.

(35) Grimme, S. [Semiempirical](https://doi.org/10.1002/jcc.20495) GGA-type density functional [constructed](https://doi.org/10.1002/jcc.20495) with a long-range dispersion correction. *J. Comput. Chem.* 2006, *27* (15), 1787−1799.

(36) Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A [consistent](https://doi.org/10.1063/1.3382344) and accurate ab initio [parametrization](https://doi.org/10.1063/1.3382344) of density functional dispersion [correction](https://doi.org/10.1063/1.3382344) (DFT-D) for the 94 elements H-Pu. *J. Chem. Phys.* 2010, *132* (15), No. 154104.

(37) Kresse, G; Furthmuller, J; Hafner, J Ab initio Force [Constant](https://doi.org/10.1209/0295-5075/32/9/005) Approach to Phonon [Dispersion](https://doi.org/10.1209/0295-5075/32/9/005) Relations of Diamond and Graphite. *Europhysics Letters (EPL)* 1995, *32* (9), 729−734.

(38) Lin, C.; Poncé, S.; Marzari, N. General [invariance](https://doi.org/10.1038/s41524-022-00920-6) and [equilibrium](https://doi.org/10.1038/s41524-022-00920-6) conditions for lattice dynamics in 1D, 2D, and 3D [materials.](https://doi.org/10.1038/s41524-022-00920-6) *npj Comput. Mater.* 2022, *8* (1), No. 236.

(39) Henkelman, G.; Uberuaga, B. P.; Jonsson, H. A [climbing](https://doi.org/10.1063/1.1329672) image nudged elastic band method for finding saddle points and [minimum](https://doi.org/10.1063/1.1329672) [energy](https://doi.org/10.1063/1.1329672) paths. *he Journal of Chemical Physics* 2000, *113* (22), 9901− 9904.

(40) Haines, C. R. S.; Coak, M. J.; Wildes, A. R.; Lampronti, G. I.; Liu, C.; Nahai-Williamson, P.; Hamidov, H.; Daisenberger, D.; Saxena, S. S. [Pressure-Induced](https://doi.org/10.1103/PhysRevLett.121.266801) Electronic and Structural Phase Evolution in the van der Waals [Compound](https://doi.org/10.1103/PhysRevLett.121.266801) FePS₃. *Phys. Rev. Lett.* 2018, *121* (26), No. 266801.

(41) Guo, Y.; Yang, J.; Zhou, J.; Zhu, N.; Jin, Y.; Thiele, G.; Preobrajenski, A.; Voloshina, E.; Dedkov, Y. Electronic [Correlations](https://doi.org/10.1021/acs.jpcc.4c02349?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) in [Multiferroic](https://doi.org/10.1021/acs.jpcc.4c02349?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Van der Waals $CuCrP_2S_6$: Insights from X-ray [Spectroscopy](https://doi.org/10.1021/acs.jpcc.4c02349?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) and DFT. *J. Phys. Chem. C* 2024, *128* (18), 7830−7839. (42) Qi, J.; Wang, H.; Chen, X.; Qian, X. [Two-dimensional](https://doi.org/10.1063/1.5038037) multiferroic [semiconductors](https://doi.org/10.1063/1.5038037) with coexisting ferroelectricity and [ferromagnetism.](https://doi.org/10.1063/1.5038037) *Appl. Phys. Lett.* 2018, *113* (4), No. 043102.

(43) Bai, H.; Li, X.; Pan, H.; He, P.; Xu, Z. A.; Lu, Y. Van der [Waals](https://doi.org/10.1021/acsami.1c18949?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) [Antiferroelectric](https://doi.org/10.1021/acsami.1c18949?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Magnetic Tunnel Junction: A First-Principles Study of a [CrSe2/CuInP2S6/CrSe2](https://doi.org/10.1021/acsami.1c18949?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Junction. *ACS Appl. Mater. Interfaces* 2021, *13* (50), 60200−60208.