

Exploring potential for semiconductor to quantum anomalous Hall insulator transitions via substrate-induced structural modifications in Ti3Se⁴ monolayers

Zhipeng Song^{1,§}, Haixia Cheng^{2,6,§}, Yun Cao¹, Qi Zheng¹, Yurou Guan², Chen Liu³, Jierui Huang¹, Li Huang¹, Jiaou Wang³, Hui Guo¹, Guangchao Chen¹, Chengmin Shen¹, Shixuan Du^{1,4,5}, Hongliang Lu^{1,5}(⊠), Wei Ji²(⊠), Xiao Lin^{1,5}(⊠), Hong-Jun Gao^{1,4,5}

¹ University of Chinese Academy of Sciences and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China ² Beijing Key Laboratory of Optoelectronic Functional Materials & amp; Micro-Nano Devices, Department of Physics, Renmin

University of China, Beijing 100872, China

³ Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China

⁴ Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China

⁵CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China

 6 Material Digital R& D Center, China Iron & amp; Steel Research Institute Group, Beijing 100081, China

Nano Res., **Just Accepted Manuscript •** https://doi.org/10.26599/NR.2025.94907123 **<https://www.sciopen.com/journal/1998-0124>** on Nov. 8, 2024

© The Authors(s)

Just Accepted

This is a "Just Accepted" manuscript, which has been examined by the peer-review process and has been accepted for publication. A "Just Accepted" manuscript is published online shortly after its acceptance,which is prior to technical editing and formatting and author proofing. Tsinghua University Press (TUP) provides "Just Accepted" as an optional and free service which allows authors to make their results available to the research community as soon as possible after acceptance. After a manuscript has been technically edited and formatted, and the page proofs have been corrected, it will be removed from the "Just Accepted" web site and published officially with volume and article number (e.g., *Nano Research*, **2025**, *18*, 94906990). Please note that technical editing may introduce minor changes to the manuscript text and/or graphics which may affect the content, and all legal disclaimers that apply to the journal pertain. In no event shall TUP be held responsible for errors or consequences arising from the use of any information contained in these "Just Accepted" manuscripts. To cite this anuscript please use its Digital Object Identifier (DOI®),which is identical for all formats of publication. ia Cheng^{2,6,8}, Yun Cao¹, Qi Zheng¹, Yurou Guan², Chen Liu³, Jierui Huan_p

n¹, Chengmin Shen¹, Shixuan Du^{1,4,5}, Hongliang Lu^{1,5}(\approx), Wei Ji²(\approx), X

e Academy of Sciences and Institute of Physics,

Semiconductor materials hold the potential to transform into QAH materials by adjusting their lattice structure.

Research Article

Exploring potential for semiconductor to quantum anomalous Hall insulator transitions via substrate-induced structural modifications in Ti3Se⁴ monolayers

Zhipeng Song^{1,§}, Haixia Cheng^{2,6,§}, Yun Cao¹, Qi Zheng¹, Yurou Guan², Chen Liu³, Jierui Huang¹, Li Huang¹, ,

Jiaou Wang³, Hui Guo¹, Guangchao Chen¹, Chengmin Shen¹, Shixuan Du^{1,4,5}, Hongliang Lu^{1,5} ([∞]),

Wei Ji² (Ξ), Xiao Lin^{1,5}(Ξ) and Hong-Jun Gao^{1,4,5}

¹*University of Chinese Academy of Sciences and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China*

Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-NanoDevices, Department of Physics, Renmin University of China, Beijing 100872, China Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China Material Digital R&D Center, China Iron & Steel Research Institute Group, Beijing 100081, China eng Song^{1,8}, Haixia Cheng^{2,6,8}, Yun Cao¹, Qi Zheng¹, Yurou Guan², Chen Liu³, Jier
acou Wang³, Hui Guo¹, Guangchao Chen¹, Chengmin Shen¹, Shixuan Du^{1,4,5}, Hong
Wei Ji² (\approx), Xiao Lin^{1,2}(\approx) and

Received: 27 August 2024; **Revised:** 17 October 2024; **Accepted:** 7 November 2024 Address correspondence to Hongliang Lu**,** luhl@ucas.ac.cn; Wei Ji, wji@ruc.edu.cn; Xiao Lin, xlin@ucas.ac.cn

Cite this article: *Nano Research*, **2025**, *18*, 94907123. https://doi.org/10.26599/NR.2025.94907123

ABSTRACT

The quantum anomalous Hall(QAH) effect in two-dimensional (2D) topological materials has attracted widespread attention due to its potential for dissipationless chiral edge transport without an external magnetic field, which is highly promising for low-power electronic applications. However, identifying materials that exhibit these properties remains particularly challenging, as only a limited number of such materials are known, raising the intriguing question of whether it is possible to induce the QAH effect in materials with ordinary

properties through structural modifications. In this work, we grow an unreported 2D titanium selenide (Ti3Se4) on a Cu(111) substrate using molecular beam epitaxy. Low-energy electron diffraction and scanning tunneling microscopy characterizations reveal a $\sqrt{7} \times \sqrt{7}$ brick-like structure. First-principles calculations and X-ray photoelectron spectroscopy measurements confirm its composition to be Ti3Se4. Our calculations further demonstrate that monolayer Ti3Se4, in its grown form on Cu(111), has the potential to host the QAH effect. Interestingly, when we examine its freestanding form, the monolayer transitions from a QAH insulator candidate into a conventional semiconductor, despite only minor differences in their atomic structures. This transition enlightens us that subtle lattice adjustments can induce a transition from semiconductor to QAH properties in freestanding Ti₃Se₄. This discovery provides a potential route to engineering practical materials that may exhibit the QAH effect. Examine its freestanding form, the monolayer transitions from
te into a conventional semiconductor, despite only minor differences.
This transition enlightens us that subtle lattice adjustments can
miconductor to QAH prope

KEYWORDS

quantum anomalous Hall effect, monolayer Ti₃Se₄, structural modifications, semiconductor, molecular beam epitaxy

1 Introduction

Topological insulators, distinguished by their topologically nontrivial band structures, have attracted significant research interest due to their unique physical properties and potential applications.¹⁻⁷ Among these, the quantum anomalous Hall (QAH) effect is particularly intriguing. It features topologically protected quantized Hall resistance and zero longitudinal resistance without an external magnetic field.^{3, 8} Bulk topological insulators possess a band gap, while their surfaces exhibit gapless Dirac states protected by time-reversal symmetry. However, introducing ferromagnetic order through magnetic doping breaks this time-reversal symmetry, leading to the opening of a gap at the Dirac point in the surface states..9 When the Fermi level falls within this exchange gap, a chiral edge mode emerges, giving rise to a topologically nontrivial electronic structure that manifests the QAH effect. 10-12 Materials exhibiting this effect hold significant potential for future low-power electronic applications.⁸

Despite their importance, materials that exhibit the QAH effect are exceedingly rare. The pioneering experimental observation of the QAH effect was in magnetically doped $(Bi, Sb)_{2}(Se, Te)_{3.13-19}$ Finding intrinsic magnetic topological insulators is considered to be a crucial strategy for enhancing the critical temperature of the OAH effect. MnBi₂Te₄ is one such material, where the QAH effect is observed at 1.4 K without a magnetic field and 6.5 K with a magnetic field in a five-septuple-layer specimen.¹¹ The QAH effect was also observed in multilayer graphene²⁰⁻²³ and AB-stacked MoTe₂/WSe₂ moiré heterobilayers.²⁴ However, the practical application of the QAH effect remains limited because of the instability of these materials in air and requirement for extremely low temperatures. Therefore, there is an urgent need to develop other methodologies to discover materials that exhibit the QAH effect that are suitable for practical applications. ille their surfaces exhibit gapless Dirac states protected by time
er, introducing ferromagnetic order through magnetic doping break
ry, leading to the opening of a gap at the Dirac point in the surfac
evel falls within t

In this work, we report a strategy to grow titanium selenides using molecular beam epitaxy (MBE), enabling fabrication of monolayer Ti₃Se₄, an unreported 2D material, on a Cu(111) substrate. Using a combination of scanning tunneling microscopy (STM), low-energy electron diffraction (LEED), X-ray photoelectron spectroscopy (XPS) and density functional theory (DFT) calculations, we characterized the brick-like atomic structure and the 3:4 composition of this material. Our first-principles calculations show that, while free-standing Ti_3Se_4 is a semiconductor, the Ti₃Se₄ monolayer in the form grown on the Cu(111) substrate has the

potential to exhibit QAH effect. Furthermore, although the QAH effect has been demonstrated in thin films or multi-layer materials, no studies have yet shown this effect in a monolayer where atoms are connected by covalent bonds.

Fig. 1. The growth process and the structure of Ti₃Se₄. (a) Schematic illustrations of the growth process of Ti₃Se₄. (b) LEED pattern of Ti₃Se₄ formed on Cu(111) surface. The white circles indicate the diffraction spots of Cu(111) substrate and the additional diffraction spots are ascribed to the Ti3Se4. (c) Sketch of the diffraction spots shown in (b), which are generated by three domains as represented in different colors. (d) Schematic diagram of Ti3Se⁴ lattice in real space, corresponding to one setof the diffraction spots (the red spots) in (c). The dark red and black arrows show the lattice vectors of the monolayer $Ti₃Se₄$ and the Cu(111) substrate, respectively.

2 Experimental section and calculation

2.1 Sample preparation

Monolayer Ti₃Se₄ on Cu(111) substrate was grown in an ultra-high vacuum molecular beam epitaxy system with a base pressure lower than 5×10^{-10} mbar. The atomically clean Cu(111) surface was obtained by cycles of argon-ion sputtering and annealing until clean surface was confirmed in STM images and sharp LEED patterns. Firstly, The high-purity Se (99.99%) was deposited to the clean Cu(111) substrate from Knudsen cell while the substrate was kept at 650 K to form the non-hole monolayer CuSe. Then Ti (99.9%) was deposited from electron-beam evaporators, and the substrate was kept at 650 K. Finally monolayer Ti3Se⁴ can be formed on the Cu(111) surface. After several experiments, we found that the effective way to fabricate this special 2D material Ti₃Se₄ is by using CuSe as a precursor. All the characterizations were done in ultra-high vacuum environment by using in-situ transfer technique. The LEED and STM characterizations were performed at a base pressure of \sim 3 \times 10 -10 mbar. LEED patterns were carried out with a commercial high-resolution instrument and the electron energy used in experiment was 66 eV. STM measurements were performed in the constant-current mode. In situ X-ray photoelectron spectroscopy measurements were performed at the Beijing Synchrotron Radiation Facility with a hemispherical energy analyzer.

2.2 Calculation details

Spin-polarized density functional theory (DFT) calculations were performed using the projector augmented wave method^{25, 26} with the Perdew-Burke-Ernzerhof exchange correlation functional as implemented in the Vienna ab-initio simulation package.^{27, 28} The density-dependent-dispersion-corrected PBE functional (PBE-dDsC) method was chosen for the van der Waals correction.²⁹⁻³¹ A kinetic energy cutoff of 500 eV for the plane-wave basis set was used. The Brillouin zone was sampled using a uniform Γ -centered $9 \times 9 \times 1$ ($15 \times 15 \times 1$) Monkhorst-pack *k*-mesh for structural relaxations (electronic structure calculations) of monolayer Ti3Se4. Spin-orbit coupling (SOC) was considered in electronic structure calculations for monolayer Ti₃Se₄. The Ti₃Se₄/Cu(111) interface was modelled using a Ti₃Se₄ monolayer and five layers of the Cu(111) plane with two fixed bottom layers. A vacuum layer of \sim 15 Å was used to eliminate interactions between periodic layers. Fixing the lattice constant identical to the Cu substrate, atomic positions were relaxed until the residual force on each atom was less than 0.01 eV/Å. The edge states of monolayer $Ti₃Se₄$ were calculated by means of maximally localized Wannier functions implemented in the WANNIER 90 package. e way to fabricate this special 2D material Ti₅Se₄ is by using CuSC
racterizations were done in ultra-high vacuum environment by us
ue. The LEED and STM characterizations were performed at a bas
bar. LEED patterns were

3 Results and discussion

3.1 Structural characterization of monolayer Ti3Se⁴ grown on Cu(111) substrate

The ratio of Ti and Se in common titanium selenides is 1:2, and synthesizing a 3:4 phase is a challenging task due to the difficulty in controlling the ratio. Here, we used a monolayer $Cuse/Cu(111)$ as a template to determine the amount of Se, and then only needed to control the amount of Ti to obtain $Ti₃Se₄$. The growth process is schematically shown in Fig. 1(a). High-purity Se was evaporated onto the Cu(111) surface to form monolayer CuSe.³² The LEED pattern in Fig. $S1(a)$ in the Supplemental Material shows hexagonal crystal structure and the STM image in Fig. S1(b) in the Supplemental Material shows atomically flat surface with 1D moiré pattern, which indicate the formation of CuSe on Cu(111) substrate.³² Then Ti atoms were deposited on the CuSe/Cu(111) surface, which changed the LEED pattern tothat shown in Fig. 1(b). The outer six diffraction spots highlighted by the white circles originate from the Cu(111) substrate with six-fold symmetry and the other distinct diffraction spots are assigned to the new material. For clarity, we sketched a simulated diffraction pattern of the sample in reciprocal space in Fig. 1(c), where each group of spots in different colors are derived from different domains and one group of the reciprocal vectors of such spots are depicted by the red arrows. The lattice of this 2D material in real space is schematically shown in Fig. 1(d), which is a $\sqrt{7} \times \sqrt{7}$ structure with respect to the Cu(111) substrate. bunt of Ti to obtain Ti₅Se₄.The growth process is schematically sirty Se was evaporated onto the Cu(111) surface to form mondulaterial in Fig. S1(a) in the Supplemental Material shows hexagor STM image in Fig. S1(b) i

Figure 2. STM images and atomic configuration of monolayer Ti₃Se₄. (a) Large-scale STM image of Ti₃Se₄. (b) High-resolution STM image of monolayer Ti₃Se₄ (V_S = -0.7 V, I_t = 50 pA, T=4.5 k). (c) Top and side view of the atomic model of monolayer $Ti₃Se₄$ on Cu(111) substrate optimized by DFT calculation. (d) STM simulation of monolayer $T_{13}Se_4$ on Cu(111) substrate with $V_S = -0.7$ V.

Figure 2(a) presents a medium-scale STM image of Ti₃Se₄, while Fig. 2(b) displays a highresolution STM image of this new 2D material, which exhibits a brick-like morphology. The primitive cell of crystal lattice is marked by a red rhombus, which shows an angle of approximately 100° between vectors *a* and *b*. The lattice constants of this primitive cell are about a=6.95 Å, b=7.08 Å. Figure $S2(a)$ in the Supplemental Material shows a representative large-scale STM image, while Fig. S2(b) shows the morphology covering an edge of this material on Cu(111), showing that its height of approximately 0.47 nm (see Fig.S2(c)).

3.2 Structural confirmation of monolayer Ti3Se⁴

To confirm the structure of this 2D material, weconstructed an atomic model of monolayer titanium selenide with achemical formula of Ti3Se⁴ according to the experimentally obtained lattice constants. The optimized atomic structure of $Ti_3Se_4/Cu(111)$ is shown in Fig. 2(c), in which the primitive cell was marked by a red rhombus. We compared experimental and simulated STM images, both acquired at a bias voltage of -0.7 V. These images are highly consistent in terms of surface morphology and lattice constants (see Figs. 2(b) and 2(d)). This consistency strongly supports that the experimentally fabricated 2D monolayer is indeed $Ti₃Se₄$, as depicted in Fig. 2(c). Further characterization of monolayer $Ti₃Se₄$ revealed that its STM morphology image varies under different biases. As shown in Fig. S3(a)-(c) in the Supplemental Material, the STM images show a brick-like morphology when the absolute bias value $(|V|)$ exceeds 0.4 V, whereas a rectangular morphology is observed when the absolute bias value is below 0.4 V. The corresponding STM simulation images, presented in Fig. S3(d)-(f), are in good agreement with the experimental results. To verify the actual surface structure, we conducted atomic force microscopy (AFM) characterization. The results, shown in Fig. S4 in the Supplemental Material, are well consistent with the LEED pattern, indicating that the brick-like morphology is the inherent structure of monolayer Ti₃Se₄. intiment in terms of surface morphology and lattice constants (see Figs.

shorey strongly supports that the experimentally fabricated 2D m

as depicted in Fig. 2(c). Further characterization of monolayer Ti₃

sorphology

High-resolution XPS measurements were subsequently conducted to further verify the chemical composition of the sample. Figure S5(a) in the Supplemental Material shows the Ti 2p photoelectron spectrum which reflects two chemical states of the titanium. The two blue peaks are located at 454.3 eV and 460.4 eV, while the other two red peaks are located at 455.9 eV and 461.8eV, respectively. Clearly, the valence state of titanium here is inconsistent with tetravalent titanium.^{33, 34} If we compare the peaks of Ti $2p_{3/2}$ (454.3 eV and 455.9 eV) with the standard XPS spectra,³⁵ we find the oxidation states of Ti in this material are $+2$ and $+3$. The Se $3d_{3/2}$ and $3d_{5/2}$ peaks are located at 55.1 eV and 54.2 eV, respectively, as shown in Fig. S5(b) in the Supplemental Material, indicating the chemical state of Se²⁻³⁵. Therefore, the XPS measurement corroborate that this new 2D material is Ti₃Se₄.

Figure 3. Calculated band structures of the constrained Ti₃Se₄. (a) The atomic model of the constrained $Ti₃Se₄$ by Cu(111) substrate. In the top panel, the bottom Se atoms are not depicted. (b, c) Calculated band structures of constrained $Ti₃Se₄$ without and with SOC, respectively. (d) Zoom-in band structures in the blue dashed rectangle in (c), showing an obvious SOC-induced energy gap near the Fermi level. (e) The primary source of magnetic moment in constrained monolayer Ti₃Se₄ arises from Ti atoms. (f, g) The band structures of constrained $Ti₃Se₄$ along the H-Y direction without and with SOC, respectively. (g) corresponds to the red rectangle in (c). (h) Edge state of the constrained $Ti₃Se₄$ denoted by the red arrow. **EVALUATE ACCES ACCES**
 EVALUATE ACCES
 EVALUATE ACCESS A

3.3 Band structures ofthe monolayer Ti3Se⁴

We next examined the potential applications of the as-fabricated $Ti₃Se₄$ in electronic devices by calculating its band structures using the Ti3Se⁴ monolayer structure directly detached from the fully relaxed $Ti_3Se_4/Cu(111)$ interface (Figs. 2(c) and 3(a)). This model excluded the influence of the substrate, standing out the intrinsic electronic properties of the Ti₃Se₄ monolayer. Figure 3(b) shows the calculated band structures of the brick-like Ti₃Se₄ monolayer without SOC. The black and red curves represent the electronic bands with spin-up and -down components, respectively, revealing that the spin-up and spin-down bands cross near the Fermi level, close to points H_1 and H in the first Brillouin zone. Including SOC in the calculations results in energy gapsat the crossing points of these two bands, leading to band inversion as shown in Figs. 3(c) and 3(d). Figure 3(e) highlights the primary source of magnetic moment in this constrained monolayer $Ti₃Se₄$ arising from Ti atoms. For clarity, magnified band structures of Ti₃Se₄ along the H-Y direction, both without and with SOC, are presented in Figs. 3(f) and 3(g), respectively. A gap of 14.5 meV is clearly identified above the Fermi level, close to the H point. Remarkably, this material exhibits a large magnetic moment (2.13 μ_B /cell) primarily resulted from the titanium atoms, as shown in Fig. 3(e). Considering the gap opening after SOC and the appearance of the large magnetic moment, we anticipate that this brick-like monolayer $Ti₃Se₄$ is a topological material capable of exhibiting the QAH effect. To further verify the QAH effect, we calculated the edge state of the bricklike Ti3Se⁴ monolayer. Figure 3(h) shows a detailed band structure diagram, clearly highlighting the edge state marked by the red arrow. The presence of the edge state, in addition to the SOC-induced gap, confirms that this monolayer satisfies the criteria of exhibiting the QAH effect.

Figure 4. Calculated band structures of the freestanding Ti₃Se₄. (a) The atomic model of freestanding Ti3Se4. In the top panel, the bottom Se atoms are not shown.(b) Brillouin zone of monolayer Ti₃Se₄. (c, d) Calculated band structures of the freestanding Ti₃Se₄ without and with spin-orbit coupling (SOC), respectively.

We next investigated the thermal stability and the corresponding electronic structures of the fully relaxed free-standing Ti₃Se₄ monolayer. The freestanding Ti₃Se₄ is found to be stable and exhibits only minor structural differences compared to the monolayer derived from the Ti₃Se₄/Cu(111) interface, as shown in Fig. $4(a)$. Specifically, a set of Se atoms shift inward, forming a concave "brick" structure, while all Ti atoms shift upwards with the Ti atoms on the long side of the brick shifting further. These in-plane structural changes lead to lattice constants a= 5.87 Å, b= 5.87 Å, and θ = 99.8°. Figure 4(b) depicts the Brillouin zone of monolayer Ti3Se4. Figure 4(c) shows the calculated band structure of freestanding monolayer Ti3Se⁴ without SOC, revealing spin degenerate bands and a clear gap around the Fermilevel. This band structure feature indicates that the freestanding Ti3Se⁴ monolayer is a semiconductor with a sizable band gap $(\sim 0.14 \text{ eV})$. Including SOC results in a slight band splitting, enlarging the band gap from 0.14 eV to 0.15 eV, as shown in Fig. 4(d). This small band gap suggests potential applications of this material in mid-infrared electronic devices.

4 Discussion

The QAH effect has vast potential for applications in quantum computing and advanced electronic devices. However, its practical use is hindered by the limited number of materials that exhibit the QAH effect, their instability in atmospheric conditions, and the need for ultralow operational temperatures. Our computational findings offer a promising solution. We have shown that the presence of the substrate lifts the out-of-plane inversion symmetry, accompanied by minor lattice and structural adjustments, in the semiconducting $Ti₃Se₄$ monolayer, which can induce the QAH effect. This discovery suggests that similar modifications could be applied to air-stable 2D materials. In other words, the QAH effect could potentially be induced by slightly altering the atomic structure, which could be utilized either by applying mechanical stress (stretching, compressing, or bending) or temperatureinduced structural phase transitions. Although these methods may not always achieve the QAH effect, they present a more efficient and practical approach compared to synthesizing new materials. Based on this example, we can further perform lattice tuning on other stable 2D semiconductor materials to investigate whether the QAH effect can emerge. We believe that sustained research and development in this direction can overcome existing limitations ts a= 5.87 Å, b= 5.87 Å, and θ = 99.8°. Figure 4(b) depicts the
yer Ti₃Se₄. Figure 4(c) shows the calculated band structure of free
vithout SOC, revealing spin degenerate bands and a clear gap arou
and structure fea

and significantly promote future applications of the OAH effect.

6 Conclusions

In summary, we have successfully grown the $Ti₃Se₄$ monolayer on the Cu(111) substrate using the MBE method. The LEED analysis indicates that this monolayer has a $\sqrt{7} \times \sqrt{7}$ rhombus structure relative to the substrate. Our STM characterizations revealed a brick-like morphology. The structure of $Ti₃Se₄$ is further confirmed by DFT calculations and XPS characterizations. Our DFT calculations also indicate that the freestanding $T_{13}Se_4$ monolayer is a conventional semiconductor. However, when constrained, the monolayer exhibits a split in the original spin degeneracy, which has the potential to host the QAH effect. This significant change in properties results from slight shifts in atomic positions, making it feasible for experimental utilization. This work paves the way for using stable, well-known 2D materials to induce more intriguing electronic properties that are difficult to achieve in these materials. e relative to the substrate. Our STM characterizations rev
logy. The structure of TisSe₄ is further confirmed by DFT cal
erizations. Our DFT calculations also indicate that the freestandin
ventional semiconductor. Howeve

Acknowledgements

We acknowledge financial support from the National Key R&D Program of China (Grants Nos. 2019YFA0308500 and 2018YFA0305800), the National Natural Science Foundation of China (Grants Nos. 61925111, 61888102, 11974422 and U23A6015), CAS Project for Young Scientists in Basic Research (YSBR-003) , the Strategic Priority Research Program of Chinese Academy of Sciences (Grants No. XDB28000000 and No. XDB30000000), the Fundamental Research Funds for the Central Universities, the Research Funds of Renmin University of China [No. 22XNKJ30 (W.J.)], and the CAS Key Laboratory of Vacuum Physics. Calculations were performed at the Physics Lab of High-Performance Computing of Renmin University of China, Shanghai Supercomputer Center and Beijing Supercomputing Center.

Electronic Supplementary Material: The structure characterization of CuSe ; The

measurement of the thickness of monolayer $Ti₃Se₄$ on Cu(111); STM images of monolayer Ti3Se⁴ under different biases ; Non-contact atomic force microscope image of monolayer Ti₃Se₄; XPS characterization of Ti₃Se₄

References

(1) Hasan, M. Z.; Kane, C. L. Colloquium: Topological insulators. Rev. Mod. Phys. **2010**, 82 (4), 3045-3067.

(2) Xu, Y.; Yan, B. H.; Zhang, H. J.; Wang, J.; Xu, G.; Tang, P. Z.; Duan, W. H.; Zhang, S. C. Large-Gap quantum spin Hall insulators in tin films. Phys. Rev. Lett. **2013**, 111 (13), 136804. ian, M. Z.; Kane, C. L. Colloquium: Topological insulators. *Rev.*
3045-3067.
Y.; Yan, B. H.; Zhang, H. J.; Wang, J.; Xu, G.; Tang, P. Z.; Duan, V.; Yan, B. H.; Zhang, H. J.; Wang, J.; Xu, G.; Tang, P. Z.; Duan, V.;
63p qu

(3) Wang, C.; Zhu, X.; Nilsson, L.; Wen, J.; Wang, G.; Shan, X.; Zhang, Q.; Zhang, S.; Jia, J.; Xue, Q. In situ Raman spectroscopy of topological insulator $Bi₂Te₃films$ with varying thickness. Nano Res. **2013**, 6 (9), 688-692.

(4) Yu, R.; Zhang, W.; Zhang, H.-J.; Zhang, S.-C.; Dai, X.; Fang, Z. Quantized Anomalous Hall Effect in Magnetic Topological Insulators. Science **2010**, 329 (5987), 61-64.

(5) Fu, L.; Kane, C. L. Topological insulators with inversion symmetry. Phys. Rev. B **2007**, 76 (4), 045302.

(6) Ren, Z.; Taskin, A. A.; Sasaki, S.; Segawa, K.; Ando, Y. Large bulk resistivity and surface quantum oscillations in the topological insulator Bi₂Te₂Se. *Phys. Rev. B* 2010, 82 (24), 241306.

(7) Wang, J.; Li, H.; Chang, C.; He, K.; Lee, J. S.; Lu, H.; Sun, Y.; Ma, X.; Samarth, N.; Shen, S.; Xue, Q.; Xie, M.; Chan, M. H. W. Anomalous anisotropic magnetoresistance in topological insulator films. Nano Res. **2012**, 5 (10), 739-746.

(8) Chang, C.-Z.; Zhang, J.; Feng, X.; Shen, J.; Zhang, Z.; Guo, M.; Li, K.; Ou, Y.; Wei, P.; Wang, L.-L.; Ji, Z.-Q.; Feng, Y.; Ji, S.; Chen, X.; Jia, J.; Dai, X.; Fang, Z.; Zhang, S.-C.; He, K.; Wang, Y.; Lu, L.; Ma, X.-C.; Xue, Q.-K. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science **2013**, 340 (6129), 167-170.

(9) Chen, Y. L.; Chu, J. H.; Analytis, J. G.; Liu, Z. K.; Igarashi, K.; Kuo, H. H.; Qi, X. L.; Mo, S. K.; Moore, R. G.; Lu, D. H.; Hashimoto, M.; Sasagawa, T.; Zhang, S. C.; Fisher, I. R.; Hussain, Z.; Shen, Z. X. Massive Dirac Fermion on the Surface of a Magnetically Doped Topological Insulator. Science **2010**, 329 (5992), 659-662. 0.

n, Y. L.; Chu, J. H.; Analytis, J. G.; Liu, Z. K.; Igarashi, K.; Kuo, H.

ore, R. G.; Lu, D. H.; Hashimoto, M.; Sasagawa, T.; Zhang,

n, Z.; Shen, Z. X. Massive Dirac Fermion on the Surface of a M

gical Insulator. *Sc*

(10) Qi, X. L.; Hughes, T. L.; Zhang, S. C. Topological field theory of time-reversal invariant insulators. Phys. Rev. B **2008**, 78 (19), 195424.

(11) Deng, Y.; Yu, Y.; Shi, M. Z.; Guo, Z.; Xu, Z.; Wang, J.; Chen, X. H.; Zhang, Y. Quantum anomalous Hall effect in intrinsic magnetic topological insulator $MnBi₂Te₄$. Science **2020**, 367 (6480), 895-900.

(12) Liu, C.-X.; Qi, X.-L.; Dai, X.; Fang, Z.; Zhang, S.-C. Quantum anomalous Hall effect in Hg1-yMnyTe quantum wells. Phys. Rev. Lett. **2008**,101 (14), 146802.

(13) Yue, C.; Xu, Y.; Song, Z.; Weng, H.; Lu, Y.-M.; Fang, C.; Dai, X. Symmetry-enforced chiral hinge states and surface quantum anomalous Hall effect in the magnetic axion insulator Bi2-xSmxSe3. Nat. Phys. **2019**, 15 (6), 577–581.

(14) Checkelsky, J. G.; Yoshimi, R.; Tsukazaki, A.; Takahashi, K. S.; Kozuka, Y.; Falson, J.; Kawasaki, M.; Tokura, Y. Trajectory of the anomalous Hall effect towards the quantized state in a ferromagnetic topological insulator. Nat. Phys. **2014**, 10 (10), 731-736.

(15) Chang, C.-Z.; Zhao, W.; Kim, D. Y.; Zhang, H.; Assaf, B. A.; Heiman, D.; Zhang, S.-C.; Liu, C.; Chan, M. H. W.; Moodera, J. S. High-precision realization of robust quantum anomalous Hall state in a hard ferromagnetic topological insulator. Nat. Mater. **2015**, 14 (5), 473-477.

(16) Wang, J.; Lian, B.; Zhang, H.; Xu, Y.; Zhang, S.-C. Quantum anomalous Hall effect with higher plateaus. Phys. Rev. Lett. **2013**, 111 (13), 136801.

(17) Xiao, D.; Jiang, J.; Shin, J.-H.; Wang, W.; Wang, F.; Zhao, Y.-F.; Liu, C.; Wu, W.; Chan, M. H. W.; Samarth, N.; Chang, C.-Z. Realization of the axion insulator state in quantum anomalous Hall sandwich heterostructures. Phys. Rev. Lett. **2018**, 120 (5), 056801. ang, J.; Lian, B.; Zhang, H.; Xu, Y.; Zhang, S.-C. Quantum ano
gher plateaus. Phys. Rev. Lett. **2013**, 111 (13), 136801.
ao, D.; Jiang, J.; Shin, J.-H.; Wang, W.; Wang, F.; Zhao, Y.-F.; Liu,
V.; Samarth, N.; Chang, C.-Z. R

(18) Liu, W.; West, D.; He, L.; Xu, Y.; Liu, J.; Wang, K.; Wang, Y.; van der Laan, G.; Zhang, R.; Zhang, S.; Wang, K. L. Atomic-scale magnetism of Cr-doped $Bi₂Se₃$ thin film topological insulators. Acs Nano **2015**, 9 (10), 10237-10243.

(19) Nan, J.; Liu, Y.; Chao, D.; Fang, Y.; Dong, S. Crystal defect engineering of $Bi₂Te₃$ nanosheets by Ce doping for efficient electrocatalytic nitrogen reduction. Nano Res. **2023**, 16 (5), 6544-6551.

(20) Geisenhof, F. R.; Winterer, F.; Seiler, A. M.; Lenz, J.; Xu, T.; Zhang, F.; Weitz, R. T. Quantum anomalous Hall octet driven by orbital magnetism in bilayer graphene. Nature **2021**, 598 (7879), 53-58.

(21) Serlin, M.; Tschirhart, C. L.; Polshyn, H.; Zhang, Y.; Zhu, J.; Watanabe, K.; Taniguchi, T.; Balents, L.; Young, A. F. Intrinsic quantized anomalous Hall effect in amoire heterostructure. Science **2020**, 367 (6480), 900-903.

(22) Polshyn, H.; Zhu, J.; Kumar, M. A.; Zhang, Y.; Yang, F.; Tschirhart, C. L.; Serlin, M.; Watanabe, K.; Taniguchi, T.; MacDonald, A. H.; Young, A. F. Electrical switching of magnetic order in an orbital Chern insulator. Nature **2020**, 588 (7836), 66-70.

(23) Chen, G.; Sharpe, A. L.; Fox, E. J.; Zhang, Y.-H.; Wang, S.; Jiang, L.; Lyu, B.; Li, H.; Watanabe, K.; Taniguchi, T.; Shi, Z.; Senthil, T.; Goldhaber-Gordon, D.; Zhang, Y.; Wang, F. Tunable correlated Chern insulator and ferromagnetism in a moire superlattice. Nature **2020**, 579 (7797), 56-61.

(24) Li, T.; Jiang, S.; Shen, B.; Zhang, Y.; Li, L.; Tao, Z.; Devakul, T.; Watanabe, K.; Taniguchi, T.; Fu, L.; Shan, J.; Mak, K. F. Quantum anomalous Hall effect from intertwined moire bands. Nature **2021**, 600 (7890), 641–646. e correlated Chern insulator and ferromagnetism in a moire stars and the correlated Chern insulator and ferromagnetism in a moire stars (77977), 56-61.

T.; Jiang, S.; Shen, B.; Zhang, Y.; Li, L.; Tao, Z.; Devakul, T.; Wat

(25) Blochl, P. E. Projector augmented-wave method. Phys. Rev. B **1994**, 50 (24), 17953- 17979.

(26) Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B **1999**, 59 (3), 1758-1775.

(27) Kresse, G.; Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B **1996**, 54 (16), 11169-11186.

(28) Kresse, G.; Furthmuller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. **1996**, 6 (1), 15-50.

(29) Klimes, J.; Bowler, D. R.; Michaelides, A. Chemical accuracy for the van der Waals density functional. J. Phys. Condens. **2010**, 22 (2), 022201.

(30) Dion, M.; Rydberg, H.; Schröder, E.; Langreth, D. C.; Lundqvist, B. I. Van der Waals density functional for general geometries Phys. Rev. Lett. **2004**, 92 (24), 246401.

(31) Klimes, J.; Bowler, D. R.; Michaelides, A. Van der Waals density functionals applied to solids. Phys. Rev. B **2011**, 83 (19), 195131.

(32) Gao, L.; Sun, J.-T.; Lu, J.-C.; Li, H.; Qian, K.; Zhang, S.; Zhang, Y.-Y.; Qian, T.; Ding, H.; Lin, X.; Du, S.; Gao, H.-J. Epitaxial Growth of Honeycomb Monolayer CuSe with Dirac Nodal Line Fermions. Adv. Mater. **2018**, 30 (16), 1707055.

(33) Shkvarin, A. S.; Yarmoshenko, Y. M.; Yablonskikh, M. V.; Merentsov, A. I.; Shkvarina, E. G.; Titov, A. A.; Zhukov, Y. M.; Titov, A. N. The electronic structure formation of Cu_xTiSe₂ in a wide range (0.04 <x< 0.8) of copper concentration. *J. Chem. Phys.* **2016**, 144 (7), 074702. kvarin, A. S.; Yarmoshenko, Y. M.; Yablonskikh, M. V.; Merents

Fitov, A. A.; Zhukov, Y. M.; Titov, A. N. The electronic struc

22 in a wide range (0.04 <x< 0.8) of copper concentration. J.

074702.

1074702.

1074702.

10

(34) Song, Z.; Yi, J.; Qi, J.; Zheng, Q.; Zhu, Z.; Tao, L.; Cao, Y.; Li, Y.; Gao, Z.; Zhang, R.; Huang, L.; Li, G.; Xu, Z.; Wu, X.; Wang, Y.; Shen, C.; Zhang, Y.-Y.; Lu, H.; Lin, X.; Du, S.; Gao, H.-J. Line defects in monolayer TiSe₂ with adsorption of Pt atoms potentially enable excellent catalytic activity. Nano Res. **2022**, 15 (5), 4687-4692.

(35) Moulder, J. F.; Stickle, W. F.; Sobol, P. E.; Bomben, K. D.; Chastian, Eden Prairie, MN, USA. X-ray photoelectron spectroscopy. **1992**.

Electronic Supplementary Material

Exploring potential for semiconductor to quantum anomalous Hall insulator transitions via substrate-induced structural modifications in Ti3Se⁴ monolayers

Zhipeng Song^{1,§}, Haixia Cheng^{2,6,§}, Yun Cao¹, Qi Zheng¹, Yurou Guan², Chen Liu³, Jierui Huang¹, Li Huang¹, ,

Jiaou Wang³, Hui Guo¹, Guangchao Chen¹, Chengmin Shen¹, Shixuan Du^{1,4,5}, Hongliang Lu^{1,5} (\approx),

Wei Ji² (Ξ), Xiao Lin^{1,5}(Ξ) and Hong-Jun Gao^{1,4,5}

¹*University of Chinese Academy of Sciences and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China*

Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-NanoDevices, Department of Physics, Renmin University of China, Beijing 100872, China Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China Material Digital R&D Center, China Iron & Steel Research Institute Group, Beijing 100081, China eng Song^{1,3}, Haixia Cheng^{2,6,8}, Yun Cao¹, Qi Zheng¹, Yurou Guan², Chen Liu³, Jier
asou Wang³, Hui Guo¹, Giangchao Chen¹, Chengmin Shen¹, Shixuan Du^{1,45}, Hong
Wei Ji² (≅), Xiao Lin^{1,5}(≈) and Hong-J

Address correspondence to Hongliang Lu**,** luhl@ucas.ac.cn; Wei Ji, wji@ruc.edu.cn; Xiao Lin, xlin@ucas.ac.cn

Supporting information to https://doi.org/10.26599/NR.2025.94907123

S1. The structure of pore-free monolayer CuSe

To prepare monolayer $Ti₃Se₄$, we first construct a monolayer pore-free CuSe on the Cu(111) surface to establish a fixed amount of Se. Pore-free CuSe is a different structure compared to porous CuSe, which forms when a slightly higher amount of Se is deposited on the $Cu(111)$ substrate.^{1, 2} The pore-free monolayer CuSe has a hexagonal structure, as shown in Figure

S1(a), and its surface features striped moiré structures, as illustrated in Figure S1(b). This structure is not highly stable; when Ti is deposited on it (without further Se deposition), controlling the amount of Ti allows for the formation of monolayer Ti3Se4. In contrast, the CuSe with holes, which has higher structural stability, does not yield monolayer Ti_3Se_4 when Ti is deposited.

Figure S1. The structure characterization of CuSe. (a) LEED pattern showing diffraction spots from Cu(111) substrate (white circles) and monolayer CuSe (orange circles). The electron beam energy is 66 eV. (b) Atomically-resolved STM image of monolayer CuSe. The scanning parameters are $V_S = -0.8$ V, $I_t = 0.5$ nA, T=300 K.

S2. STM image of the boundary of a monolayer Ti3Se⁴

To determine the thickness of the monolayer Ti3Se4, we characterized its boundary and obtained morphological images and height data. On the left part of the image, we observed clusters, primarily consisting of Ti atoms. These clusters formed because there were insufficient Se atoms in the area to react with the Ti atoms, preventing the formation of a complete film.

Figure S2. The measurement of the thickness of monolayer Ti₃Se₄ on Cu(111). (a) Large-scale STM image of monolayer Ti₃Se₄ (V_S = -0.8 V, I_t = 10 pA, T=4.5 k). (b) STM image of monolayer Ti₃Se₄ on Cu(111) showing an edge (V_S = -0.8 V, I_t = 10 pA, T=4.5 k). (c) Line profile taken along

the white line in (a), showing the height of monolayer $Ti₃Se₄$.

S3. STM morphology changes of monolayer Ti3Se⁴

STM offers unparalleled insights into the surface structures of materials by mapping the spatial distribution of electronic states. The morphology of these structures, however, can vary significantly with changes in the experimental conditions, such as the applied bias voltage. As with the monolayer Ti₃Se₄ samples we prepared, the surface morphology underwent significant changes with the variation of the bias voltage, transitioning from brick-like to rectangular morphologies under specific voltage conditions, as shown in Figure S3.

The observed changes in morphology can be attributed to the alterations in the local electronic structure caused by varying the bias voltage. When a higher bias voltage is applied, it may involve more electronic states in surface Se atoms, which can cause greater overlap of electron wavefunctions in certain areas, giving a brick-like morphology. Conversely, lower bias voltages might make lower energy electronic states more apparent, potentially resulting in a more dispersed electron cloud that manifests as a rectangular surface morphology. The result adds to the existing literature by documenting a rare observation of morphological transitions between rectangular and brick-like structures, contributing to the broader knowledge of surface science. with the variation of the bias voltage, transitioning from brick
logies under specific voltage conditions, as shown in Figure S3.

beserved changes in morphology can be attributed to the alterations is

caused by varying t

Figure S3. STM images of monolayer Ti₃Se₄ under different biases. (a, b, c) High-resolution STM image of monolayer Ti₃Se₄ at -0.7 V, -0.4 V and -0.1 V, respectively. The tunneling current is 50 pA. STM image shows a brick-like morphology when the absolute value of bias ($|V| > 0.4$ V and the rectangle morphology when $|V| < 0.4$ V. (d, e, f) STM simulation of monolayer Ti₃Se₄ on

 $Cu(111)$ substrate at -0.7 V, -0.4 V and -0.1 V, respectively. The simulated STM images are consistent with the experiments under different biases.

S4. AFM morphology of monolayer Ti3Se⁴

Unlike STM, which operates based on electron tunneling, atomic force microscopy (AFM) works on a different principle. It creates a map of the surface morphology by measuring the force between the probe and the sample, instead of electron tunneling. This approach is especially useful for materials like monolayer $T_{13}Se_4$, where the actual surface morphology could be masked in STM images due to the effects of electronic states under different bias voltages. Using AFM allows for greater atomic resolution of the surface, emphasizing characteristics that are not influenced by electronic effects. As demonstrated in Figure S4, the brick-like morphology obtained with AFM represents the intrinsic structure of monolayer Ti₃Se₄. erials like monolayer TisSe, where the actual surface morphology
aages due to the effects of electronic states under different bias v
for greater atomic resolution of the surface, emphasizing characted
by electronic effect

Figure S4. Non-contact atomic force microscope image of monolayer Ti₃Se₄, revealing the real surface atomic structure. AFM scanning parameters: amplitude=200 pm.

S5. XPS characterization of monolayer Ti3Se⁴

The initial synthesis of a new monolayer 2D material necessitates the determination of its structure and composition. For our newly synthesized monolayer Ti₃Se₄, we have characterized the crystal structure and surface morphology using LEED and STM, respectively, and have simulated its structural features using DFT calculations. Nonetheless, the valence states of the compound require further experimental investigation through XPS to identify the valence states of its constituent elements and to acquire a detailed understanding of the material's electronic structure. Comprehensive characterization of this new 2D material and verification of its composition are essential to enhance our understanding of its potential applications.

Figure S5. XPS characterization of Ti₃Se₄. (a) XPS measurements for the binding energies of Ti 2p electrons. The blue and red curves are obtained by peak separation method, corresponding to the Ti^{2+} and Ti^{3+} valence states of Ti ions in Ti₃Se₄, respectively. Discrete black points represent the raw data and the green curve is the fitting curve. (b) XPS spectrum of the Se 3d core levels, revealing the chemical state of Se 2-.

(1) Lin, X.; Lu, J. C.; Shao, Y.; Zhang, Y. Y.; Wu, X.; Pan, J. B.; Gao, L.; Zhu, S. Y.; Qian, K.; Zhang, Y. F.; Bao, D. L.; Li, L. F.; Wang, Y. Q.; Liu, Z. L.; Sun, J. T.; Lei, T.; Liu, C.; Wang, J. O.; Ibrahim, K.; Leonard, D. N.; Zhou, W.; Guo, H. M.; Wang, Y. L.; Du, S. X.; Pantelides, S. T.; Gao, H. J. Intrinsically patterned two-dimensional materials for selective adsorption of molecules and nanoclusters. Nat. Mater. **2017**, 16 (7), 717-721. **Binding energy (eV)** Binding E
 S5. XPS characterization of TisSea. (a) XPS measurements for the birons. The blue and red curves are obtained by peak separation methand Ti^{3+} valence states of Ti ions in TisSea, resp

(2) Song, Z.; Huang, J.; Zhang, S.; Cao, Y.; Liu, C.; Zhang, R.; Zheng, Q.; Cao, L.; Huang, L.; Wang, J.; Qian, T.; Ding, H.; Zhou, W.; Zhang, Y.-Y.; Lu, H.; Shen, C.; Lin, X.; Du, S.; Gao, H.-J. Observation of an Incommensurate Charge Density Wave in Monolayer TiSe2/CuSe/Cu(111) Heterostructure. Phys. Rev. Lett. **2022**, 128 (2), 026401.